Project Icon

SupContrast

监督对比学习框架增强视觉表征

SupContrast是一个开源的监督对比学习框架,致力于提升视觉表征学习效果。该项目实现了监督对比学习和SimCLR算法,在CIFAR数据集上展现出色性能。它提供简洁的损失函数实现,支持自定义数据集,并附有详细运行指南和可视化结果。在ImageNet上,SupContrast实现了79%以上的Top-1准确率。这一工具为计算机视觉领域的研究和应用提供了重要支持。

superpixel-benchmark - 超像素算法的全面评估与性能比较
GithubSuperpixels图像处理开源项目数据集算法比较计算机视觉
该项目是一款全面的超像素算法评估平台,评估28种算法在5个数据集上的性能。通过参数优化和使用边界召回率、分割错误率、解释方差等指标,实现了客观和公平的比较。项目包含Docker实现、平均指标计算工具和详细文档,适用于研究人员和开发者进行深入研究与应用。
deepdataspace - 开源计算机视觉数据集工具 提供可视化 标注和分析功能
DeepDataSpaceGithub开源数据集工具开源项目数据可视化数据标注模型分析
DeepDataSpace是一个开源计算机视觉数据集工具,提供交互式数据可视化、探索和智能标注功能。支持多平台和协作工作流,易于安装使用。通过直观界面帮助用户高效管理和分析大规模图像数据集,适用于CV项目开发和研究。
stable-diffusion-safety-checker - 基于CLIP模型的图像安全检查工具
CLIP模型GithubHuggingface内容审核图像识别安全检查器开源项目机器学习模型
stable-diffusion-safety-checker是一个开源的图像内容审核工具。该项目利用CLIP模型技术,专注于识别和过滤不适宜内容。它不仅可用于研究计算机视觉模型的性能,还能揭示潜在的偏见问题。尽管在某些分类任务中表现优异,但仍存在局限性。推荐将其应用于学术研究,使用时需谨慎评估相关风险。
moco - 基于动量对比的无监督视觉表示学习
GithubImageNetMoCoResNet-50对比学习开源项目无监督视觉表示学习
MoCo是一种创新的无监督视觉表示学习方法,利用动量对比在大规模未标注数据上进行预训练。该方法在ImageNet数据集上训练ResNet-50模型,无需标注即可学习出高质量的视觉特征。MoCo v2版本在原基础上进一步优化,线性分类准确率达67.5%。项目开源了PyTorch实现,支持分布式训练,并提供预训练权重。
myvision - 免费在线图像标注工具
COCO-SSDGithubMyVision图像注释工具开源项目数据集机器学习
MyVision是一款免费在线图像标注工具,旨在生成计算机视觉机器学习训练数据。它具有快速标注、多种数据集格式支持和现有项目导入功能。还利用COCO-SSD预训练模型自动标注对象,保障数据隐私。无需任何设置,只需打开index.html文件即可使用。适用于大数据集的高效工作流程,并支持英文和中文。
SUPIR - 探索真实感图像增强的最新AI技术
AI技术GithubSUPIR图像处理图片恢复开源项目热门非商业使用
SUPIR借助先进的AI技术,为用户提供了下一级别的图像处理和上采样体验。该技术专为处理真实世界中的图像恢复而优化,确保图片质量和细节的极致呈现。无论您是摄影爱好者、数字艺术家还是图像增强爱好者,都可以免费试用并体验其卓越性能。
DCLGAN - 无监督图像转换的双重对比学习方法 实现更真实几何变换
DCLGANGithub图像转换对比学习开源项目无监督学习生成对抗网络
DCLGAN是一种新型无监督图像到图像转换模型,采用双重对比学习方法。相比CycleGAN,它能实现更真实的几何变换;相比CUT,具有更高的稳定性和性能。DCLGAN适用于多种图像转换任务,如猫狗互换和马斑马互换。项目提供了预训练模型和使用指南,便于研究者进行实验和评估。
distilabel - AI数据合成与反馈框架
AI反馈DistilabelGithub开源社区开源项目数据合成高质量数据
Distilabel是专为AI工程师设计的开源框架,用于数据合成和反馈。该框架提供高质量输出、数据所有权和高效性,适用于预测和生成模型。通过提升数据质量和整合多种LLM反馈,Distilabel提高AI输出质量。支持与最新研究的整合,确保灵活性、可扩展性和容错能力。欢迎加入开源社区,参与数据集和模型的构建,享受社区资源和支持。
night-enhancement - 将层分解与光效抑制结合的无监督夜间图像增强方法
ECCVGithub图像处理夜间图像增强开源项目无监督学习计算机视觉
这个项目提出了一种新型无监督夜间图像增强方法,结合层分解和光效抑制技术来提升夜间图像质量。该方法能有效去除不必要的光效,同时提高图像整体可见度。在多个低光照数据集上,这种方法展现出优异性能,为夜间图像处理领域开辟了新思路。项目公开了源代码、预训练模型和数据集,便于研究人员进行深入研究和应用。
Awesome-MIM - 掩码图像建模在自监督表示学习中的应用与发展
GithubMasked Image ModelingTransformer开源项目深度学习自监督学习计算机视觉
该项目汇总了掩码图像建模(MIM)及相关的自监督学习方法。涵盖了从2008年以来的主要自监督学习研究,并展示了其在自然语言处理和计算机视觉领域的发展历程和关键节点。所有内容按时间顺序排列并定期更新,包括相关论文、代码和框架的详细信息,旨在帮助研究者深入理解和应用MIM方法。欢迎贡献相关文献或修正建议。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号