Project Icon

torch-conv-kan

引入基于Kolmogorov-Arnold表示理论的高效卷积神经网络

项目展示了使用PyTorch和CUDA加速的Kolmogorov-Arnold网络(KAN)模型的训练、验证和量化,支持MNIST、CIFAR、TinyImagenet和Imagenet1k数据集的性能评估。当前项目持续开发,已发布涉及ResNet、VGG、DenseNet、U-net等架构的新模型和预训练权重,适用于医疗图像分割和高效卷积神经网络的进一步研究和优化。

X-KANeRF - 利用多种基函数拟合神经辐射场方程
GithubKANNeRF基函数开源项目神经网络计算机图形学
X-KANeRF项目探索了利用Kolmogorov-Arnold网络和多种基函数拟合神经辐射场方程的方法。项目实现了20多种基函数模型,包括B样条、傅里叶变换和高斯RBF等,并在合成数据集上比较了性能。研究结果显示不同基函数对NeRF表现的影响各异,为NeRF模型优化提供了新视角。该研究为理解和改进NeRF模型提供了新思路,有望推动计算机视觉和图形学领域的进步。
Pytorch-UNet - PyTorch实现的高效U-Net语义分割模型
CarvanaGithubPyTorchU-Net开源项目深度学习语义分割
Pytorch-UNet项目提供定制的U-Net实现,支持多类别分割任务,包括车体遮罩、肖像分割和医学图像分割。兼容PyTorch 1.13及以上版本,提供Docker镜像和预训练模型,便于集成和使用。模型在高分辨率图像上训练,取得了0.988的Dice系数,并支持自动混合精度,可通过Weights & Biases实时监控训练进度。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
pytorch-animeGAN - 基于PyTorch的轻量级GAN实现 快速将照片转换为动漫风格
AnimeGANGithub人工智能图像风格转换开源项目深度学习计算机视觉
pytorch-animeGAN是AnimeGAN的PyTorch实现,能够快速将真实照片转换为动漫风格。项目提供Hayao、Shinkai和Arcane等多种预训练模型,支持使用预训练模型进行推理或在自定义数据集上训练。除了图像转换,还支持视频转换和批量处理,并集成色彩迁移模块以保留原始图像颜色。该开源项目为开发者和研究人员提供了便捷的动漫风格转换工具。
ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
LeNet5-MNIST-PyTorch - PyTorch实现LeNet-5识别MNIST数据集
GithubLeNet-5MNISTPyTorch图像识别开源项目深度学习
这是一个开源深度学习项目,使用PyTorch实现LeNet-5卷积神经网络识别MNIST数据集。项目采用MaxPooling和ReLU,测试集精度达99%。包含完整代码实现,涵盖数据处理、模型训练和评估。适合深度学习初学者学习卷积神经网络基础知识。
keras-tcn - 强化长记忆能力的时序卷积网络
GRUGithubKeras TCNLSTMTemporal Convolutional NetworkTensorFlow开源项目
该项目介绍了时序卷积网络(TCN)如何在长时间序列数据中替代LSTM/GRU并表现出更优异的性能。TCN提供更长的记忆能力、更稳定的梯度,同时支持并行处理和灵活的感受野。这些特性在人脸识别、添加任务、复制记忆任务和语言模型等任务中表现突出。用户可以通过本项目配置和运行TCN模型,探索其在不同任务中的应用潜力。
annotated_deep_learning_paper_implementations - 简洁易懂的PyTorch神经网络和算法实现
GANGithubPyTorchReinforcement LearningTransformerlabml.ai开源项目
该项目提供详细文档和解释的简明PyTorch神经网络及算法实现,涵盖Transformer、GPT-NeoX、GAN、扩散模型等前沿领域,并每周更新新实现,帮助研究者和开发者高效理解深度学习算法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号