Project Icon

MoE-LLaVA-Phi2-2.7B-4e

MoE-LLaVA模型应用专家混合系统提升视觉语言能力

MoE-LLaVA是一个采用专家混合架构的视觉语言模型。该模型使用3B稀疏激活参数,性能与LLaVA-1.5-7B相当,在部分任务上超越LLaVA-1.5-13B。MoE-LLaVA可在8张V100 GPU上2天内完成训练,并在多项视觉理解基准测试中表现优异。这一创新为多模态AI领域提供了新的研究方向。

llava-interleave-qwen-0.5b-hf - 多模态模型中的图像到文本生成的应用与研究
GithubHuggingfaceLLaVA Interleave图像文本转换多模态模型开源项目机器学习模型自然语言处理
LLaVA Interleave是基于变换器架构进行优化的开源自回归语言模型,专注于多模态大模型和聊天机器人的研究,支持多图像和多提示生成,适用于计算机视觉和自然语言处理领域的研究人员和爱好者。在遵循开放许可证要求的前提下,模型提升了图像到文本的生成能力。通过4比特量化和Flash Attention 2优化策略,显著提高了生成效率。
vip-llava-7b - ViP-LLaVA的多模态对话与视觉指令协同应用
GithubHuggingfaceViP-LLaVA多模态模型开源项目模型聊天机器人自然语言处理计算机视觉
ViP-LLaVA-7B是一个开源的聊天机器人,通过对LLaMA/Vicuna的图像与区域级指令数据进行微调,采用transformer架构。其主要用于多模态模型及聊天机器人研究,适合计算机视觉、自然语言处理、机器学习与人工智能领域的研究者及爱好者。该模型于2023年11月完成训练,并在四项学术区域级基准测试中表现优异。
DeepSeek-MoE - 创新MoE架构打造高效大规模语言模型
DeepSeekMoEGithubMoE架构大语言模型开源模型开源项目模型评估
DeepSeek-MoE项目开发了创新的混合专家架构语言模型,采用细粒度专家分割和共享专家隔离策略。该16.4B参数模型仅使用40%计算量就达到DeepSeek 7B和LLaMA2 7B的性能水平。模型可在单个40GB内存GPU上直接部署运行,无需量化,为学术和商业研究提供了高效便捷的工具。
LLaVA-NeXT-Video-7B-hf - 先进多模态AI模型实现视频和图像理解
GithubHuggingfaceLLaVA-NeXT-Video人工智能多模态大语言模型开源项目模型视频理解
LLaVA-NeXT-Video-7B-hf是一个开源多模态AI模型,通过视频和图像数据的混合微调,实现了出色的视频理解能力。该模型支持多视觉输入和多提示生成,在VideoMME基准测试中表现优异。基于Vicuna-7B语言模型,可处理视频问答和图像描述等视觉任务。模型支持4位量化和Flash Attention 2优化,提供灵活高效的使用方式。
llava-onevision-qwen2-7b-si - 多模态AI模型实现图像和视频的深度理解
GithubHuggingfaceLLaVA-OneVisionQwen2图像识别多模态开源项目机器学习模型
LLaVA-OneVision是一个基于Qwen2语言模型的多模态AI系统,拥有32K tokens的上下文窗口。该模型能够处理单图像、多图像和视频输入,在多个基准测试中表现出色。支持英语和中文,适用于广泛的视觉理解任务。开发者可通过提供的Python代码快速集成该模型,实现图像分析和问答功能。
Llama-3.2-90B-Vision - 前沿视觉语言模型助力图像识别和推理
GithubHuggingfaceLlama 3.2Meta多模态大语言模型开源项目模型自然语言处理计算机视觉
Llama-3.2-90B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入并输出文本。该模型在视觉识别、图像推理、描述和问答等任务中表现优异,性能超越多个开源和闭源多模态模型。基于Llama 3.1文本模型,通过视觉适配器实现图像理解,支持128K上下文长度。经指令微调后可用于商业和研究,适用于多种视觉语言任务。使用需遵守Llama 3.2社区许可协议。
llava-onevision-qwen2-72b-si - 多模态模型提高视觉数据交互准确率
GithubHuggingfaceLLaVA-OneVision准确率图像交互多模态开源项目模型预训练模型
此开源项目使用多模态模型,准确率介于85.1%至93.7%之间,在AI2D、DocVQA、Science-QA等数据集表现优异。基于Qwen2语言模型,LLaVA-OneVision能在多语言环境中与视觉数据进行交互,经过大型图像及视频数据集训练,使用bfloat16精度。
Llama-3.2-11B-Vision - Meta开发的多模态大语言模型 支持视觉识别和图像推理
GithubHuggingfaceLLAMA 3.2多模态模型开源项目机器学习模型自然语言处理计算机视觉
Llama-3.2-11B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入、文本输出。该模型在视觉识别、图像推理、图像描述和通用图像问答方面表现出色。它基于Llama 3.1文本模型构建,采用优化的Transformer架构,通过监督微调和人类反馈强化学习进行对齐。模型支持128K上下文长度,经过60亿(图像,文本)对训练,知识截止到2023年12月。Llama-3.2-11B-Vision为商业和研究用途提供视觉语言处理能力。
llava-onevision-qwen2-7b-ov-chat - LLaVA-OneVision多模态AI模型支持图像和视频交互
GithubHuggingfaceLLaVA-OneVision图像处理多模态开源项目模型深度学习自然语言处理
LLaVA-OneVision是一款基于Qwen2架构的多模态AI模型,专门针对聊天场景进行优化。该模型通过多阶段训练,包括LCS-558K预训练、高质量合成数据训练和单图数据训练等,最终经过RLHF进一步提升性能。它能够与图像、多图和视频进行交互,同时保持良好的指令遵循能力,是一个versatile的视觉语言模型。
Defne_llama3_2x8B - 增强型MoE模型,结合llama3的融合创新
Defne_llama3_2x8BGithubHuggingfacetransformers开源项目文本生成模型混合专家模型自然语言处理
Defne_llama3_2x8B是一个支持多语言的混合专家结构(MoE)模型,由两个llama3模型合并而成。通过transformers库实现高效的自然语言生成,支持英语和土耳其语,适合多语言文本生成和自然语言理解。用户可通过Python代码轻松与模型交互,实现数学问题解答及友好的人机对话。该模型在动态计算环境中具备高效的运行能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号