Project Icon

DeepLearning

深度学习概念与技术详解

本项目解析《深度学习》一书,通过数学推导和Python代码实现,涵盖线性代数、概率论、优化算法等基础知识,以及卷积网络、序列建模等深度学习技术。适用于深度学习初学者和从业者,提供详尽的理论和源码实现,帮助掌握深度学习算法。

deep-learning-drizzle - 深度学习与AI在线课程
Github开源项目机器学习深度学习神经网络自然语言处理计算机视觉
deep-learning-drizzle 集结了全球顶尖院校与研究机构的深度学习与AI在线课程。覆盖初级到高级课程,涉及自然语言处理、计算机视觉、机器学习等多个领域,提供视频教程及实战操作指南。适合各层次人士学习,助您深入AI领域。
paper-reading - 深度学习基础架构与工程应用详细介绍
AI compilerCUDADeep LearningGithub开源项目深度学习框架高性能计算
本页面介绍了深度学习基础架构及其工程应用,包括编程语言、算法训练与推理部署、AI编译器加速和硬件工程。页面提供了Deep Learning、HPC高性能计算等学习资源和工具链接,并涵盖Docker、K8S、Protobuf与gRPC等工程化解决方案。还提供相关教程与代码示例,适合深度学习和高性能计算领域的开发者和研究人员。
DeepLearningProject - 全面教程涵盖数据集创建与深度学习
GithubHarvard UniversityPyTorchPython开源项目机器学习深度学习
本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。
mit-deep-learning - MIT深度学习课程教程集合
GithubMIT Deep Learning卷积神经网络开源项目深度学习教程深度强化学习生成对抗网络
本项目汇集了MIT深度学习课程的全面教程,涵盖基础知识、场景分割和生成对抗网络(GANs)等主题,适合初学者和进阶用户。项目包括前沿模型如DeepLab和BigGAN,并提供Jupyter Notebook和Google Colab示例,帮助学习者掌握核心技术。另有深度强化学习竞赛DeepTraffic,挑战开发者在复杂交通环境中训练神经网络实现高速驾驶。
RL-Theory-book - 强化学习理论与算法全面指南
Github人工智能开源项目强化学习深度学习理论算法
该书全面介绍强化学习理论,涵盖从基础到前沿的多个主题。内容包括元启发式方法、经典理论、基于价值和策略的方法、连续控制和基于模型的方法等。同时探讨模仿学习、内在动机和多任务学习等新兴领域。书中系统阐述理论基础和算法洞察,适合强化学习研究者和实践者参考。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
zero-to-mastery-ml - 从零到精通的机器学习全面指南
GithubScikit-LearnTensorFlowZero to Mastery Machine Learning开源项目数据科学机器学习
本教程涵盖了机器学习从基础到高级的完整学习路径。内容包括代码示例、笔记本、图像和其他资料,均可通过Udemy和zerotomastery.io获取。课程内容包括六步机器学习建模框架、数据科学工具、结构化数据项目、神经网络及深度学习。最新的在线课程材料正在开发中,预计2024年发布更新。此外,还提供学生分享的学习笔记,丰富学习资源。
generative_adversarial_networks_101 - 探索生成对抗网络的核心概念和实践实现
GANGithub人工智能图像生成开源项目深度学习生成对抗网络
该项目全面介绍生成对抗网络(GANs)的基本概念和应用实践。内容涵盖多种GAN模型在MNIST和CIFAR-10数据集上的具体实现,包括DCGAN、CGAN等。通过详细的代码示例、训练过程和结果可视化,展示了GAN的工作原理。项目还提供丰富的参考资料和相关论文,为深入学习和实践GAN提供了有价值的资源。
machine-learning-curriculum - 了解机器学习及其工具,全面提升技能指南
Artificial IntelligenceDeep LearningGithubMachine LearningReinforcement LearningTensorFlow开源项目
该教程旨在引导学习机器学习,推荐实用工具和媒体资源,帮助用户融入机器学习领域。内容定期更新,保持新鲜度并移除过时信息。涵盖机器学习、深度学习、强化学习及最佳实践等多个主题,并提供详细的学习资源和书籍推荐。适合从初学者到高级用户,帮助提升机器学习技能,掌握最新技术。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号