Project Icon

nb-wav2vec2-1b-bokmaal-v2

基于Wav2Vec 2.0的挪威书面语语音识别模型

nb-wav2vec2-1b-bokmaal-v2是一个专门针对挪威语(书面语)的语音识别模型。它基于Wav2Vec 2.0架构,经过10亿参数的训练,为挪威语语音识别任务提供了高效准确的开源解决方案。这个开源模型适用于语音转文本、语音助手等应用场景。

wav2vec2-large-xlsr-53-portuguese - XLSR-53微调的葡萄牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型葡萄牙语语音识别
此语音识别模型通过在Common Voice 6.1数据集上微调XLSR-53模型,专门针对葡萄牙语优化。在测试中,模型表现优异,词错误率为11.31%,字符错误率为3.74%。模型设计用于处理16kHz采样率的语音输入,可独立使用或与语言模型结合以提升性能。项目还包含详细的使用说明和评估工具,方便研究者和开发者快速应用和测试。
wav2vec2-lv-60-espeak-cv-ft - 利用微调的wav2vec2模型提升多语言语音和语素识别能力
GithubHuggingfaceWav2Vec2开源项目模型自主学习自动语音识别语音识别跨语言
wav2vec2-large-lv60模型经过多语言Common Voice数据集微调,实现跨语言语音与语素识别。模型在16kHz采样率的语音输入下输出语素标签,需使用语素到单词的映射字典进行转换。该方法在未见语言的转录中表现优异,超过以往单一语言模型的效果。
wav2vec2-base-960h - Facebook开发的高效语音识别模型
GithubHuggingfaceLibriSpeechWav2Vec2开源项目模型深度学习自然语言处理语音识别
wav2vec2-base-960h是Facebook开发的语音识别模型,基于960小时LibriSpeech数据集训练。在LibriSpeech clean/other测试集上,词错误率分别为3.4%和8.6%。模型可从原始音频学习表征,仅需1小时标记数据即可超越现有方法,展示了低资源语音识别的潜力。
wav2vec2-xls-r-1b - 大规模多语言语音预训练模型支持128种语言处理
GithubHuggingfaceXLS-R多语言模型开源项目模型语音处理语音识别预训练
Wav2Vec2-XLS-R-1B是Facebook AI开发的大规模多语言语音预训练模型,拥有10亿参数。该模型在436K小时的公开语音数据上训练,涵盖128种语言。在CoVoST-2语音翻译基准测试中平均提升7.4 BLEU分,BABEL等语音识别任务错误率降低20%-33%。适用于语音识别、翻译和分类等任务,需要16kHz采样率的语音输入进行微调。
wav2vec2-xls-r-1b-portuguese - XLS-R 1B微调的葡萄牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLS-R开源项目模型葡萄牙语语音识别
该项目基于XLS-R 1B模型微调,专注于葡萄牙语语音识别。模型在Common Voice 8.0等多个数据集上训练,测试集词错误率达8.7%。支持16kHz采样率语音输入,可通过HuggingSound库或自定义脚本使用。项目为葡萄牙语语音识别研究和应用提供了实用工具。
wav2vec2-base-vi - 基于wav2vec2的越南语自监督学习模型提升语音识别性能
GithubHuggingfaceWav2Vec2开源项目模型自监督学习语音识别越南语预训练模型
该项目开发了基于wav2vec2架构的越南语自监督学习模型。模型使用13000小时的多样化越南语YouTube音频数据进行预训练,包括清晰音频、噪声音频和对话等。项目提供95M参数的基础版和317M参数的大型版预训练模型。在VLSP 2020 ASR数据集上,大型模型配合5-gram语言模型可将词错率降至5.32%。这些模型为越南语语音识别等下游任务提供了有力支持。
wav2vec2-base-vietnamese-250h - wav2vec2提升越南语音识别精度
CTCGithubHuggingfacewav2vec2开源项目模型自动语音识别语音识别越南语
项目应用wav2vec2技术实现越南语的自动语音识别。模型在13000小时的未标注YouTube音频上预训练,并在250小时的VLSP ASR数据集上进行微调,支持16kHz采样音频。结合4-grams语言模型,显著提高了语音识别的准确性,降低了VIVOS数据集的词错误率,从10.77降至6.15。项目使用CC BY-NC 4.0授权,适用于非商业用途。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
scandi-nli-large - 北欧语言自然语言推理模型的性能分析
GithubHuggingfaceScandiNLI丹麦语开源项目挪威语模型瑞典语自然语言推理
该模型针对丹麦语、挪威语和瑞典语进行了自然语言推理微调,适用于零样本分类任务,拥有多个版本。大模型在语言任务中成绩突出,MCC为73.70%,F1分数为74.44%,准确率达83.91%。基于NbAiLab/nb-bert-large模型,并综合多语言NLI数据集进行训练,实现了对北欧语言的全面支持,适用于多语言自然语言处理。
wav2vec2-large-xlsr-53-german - 优化德语自动语音识别的开源模型
Common VoiceGithubHuggingfaceWav2Vec2开源项目德语模型深度学习语音识别
本项目利用wav2vec2-large-xlsr-53-german模型对德语Common Voice数据集进行自动语音识别,得到WER为18.5%的结果。项目采用Torchaudio和Transformers库,并使用Resample进行音频预处理。该模型在语音转文字应用中具有广泛的研究价值。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号