Project Icon

nb-wav2vec2-1b-bokmaal-v2

基于Wav2Vec 2.0的挪威书面语语音识别模型

nb-wav2vec2-1b-bokmaal-v2是一个专门针对挪威语(书面语)的语音识别模型。它基于Wav2Vec 2.0架构,经过10亿参数的训练,为挪威语语音识别任务提供了高效准确的开源解决方案。这个开源模型适用于语音转文本、语音助手等应用场景。

wav2vec2-xls-r-300m-mixed - wav2vec2模型在多语言环境下的创新语音识别解决方案
GithubHuggingfaceKeraswav2vec2-xls-r-300m-mixed开源项目模型评估数据集语言模型语音识别
wav2vec2-xls-r-300m-mixed项目在马来语、Singlish和普通话三种语言上进行了微调。依托单GPU(RTX 3090 Ti)完成训练,结合语言模型在CER和WER等指标上表现优异,尤其在普通话识别中取得了最低WER 0.075。这为多语言语音识别的研究与优化提供了一个有效路径。
wav2vec2-large-xlsr-53-japanese - 基于Wav2Vec2的日语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目日语模型语音识别
该模型是在facebook/wav2vec2-large-xlsr-53基础上,使用日语语音数据集微调而来的语音识别模型。在Common Voice日语测试集上,其词错误率(WER)为81.80%,字符错误率(CER)为20.16%,优于同类模型。它可直接用于日语语音转文本,无需额外语言模型。模型要求输入音频采样率为16kHz。
wav2vec2-large-xlsr-53-english - XLSR-53微调的英语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型自然语言处理语音识别
该模型基于wav2vec2-large-xlsr-53在Common Voice 6.1英语数据集上微调而来。在Common Voice英语测试集上,模型达到19.06%词错率和7.69%字符错误率。支持16kHz采样率语音输入,可单独使用或结合语言模型。提供HuggingSound库和自定义脚本的Python示例代码,方便用户进行语音识别。
wav2vec2-large-robust-ft-libritts-voxpopuli - 精确转录语音的Wav2Vec2模型 支持标点符号输出
GithubHuggingfacewav2vec2开源项目数据集文本转语音标点符号模型语音识别
Wav2Vec2-large-robust-ft-libritts-voxpopuli是一款经过优化的语音转录模型,专门生成带标点符号的高质量文本。该模型基于LibriTTS和VoxPopuli数据集训练,在Librispeech验证集上达到4.45%的词错误率。它尤其适用于TTS模型转录,准确的标点有助于提升语音韵律。虽主要针对清晰音频优化,但对噪声音频如CommonVoice也有良好表现。
wav2vec2-large-xlsr-53-persian - 基于XLSR-53微调的开源波斯语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型波斯语语音识别
该开源项目提供了一个基于XLSR-53的波斯语语音识别模型。通过在Common Voice数据集上微调,模型达到30.12%词错误率和7.37%字符错误率,超越同类方案。模型支持16kHz采样率语音直接识别,无需额外语言模型。项目包含完整使用指南和评估脚本,方便研究与应用。
wav2vec2-base-superb-er - 基于Wav2Vec2的语音情感识别模型实现高精度声学特征提取
GithubHuggingfaceIEMOCAPSUPERBWav2Vec2开源项目情感识别模型语音识别
wav2vec2-base-superb-er是一个针对SUPERB情感识别任务优化的语音情感识别模型。该模型可从16kHz采样的语音中提取声学特征,识别说话者的情感状态。经IEMOCAP数据集训练后,模型能识别4种主要情感类别,测试集识别准确率为62.58%。模型提供pipeline接口和直接调用方式,便于快速部署语音情感分析应用。
wav2vec2-large-xlsr-53-spanish - 基于XLSR-53微调的西班牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型西班牙语语音识别
此西班牙语语音识别模型基于Facebook的wav2vec2-large-xlsr-53,在Common Voice数据集上微调。模型在测试集上达到8.82%词错误率和2.58%字符错误率,可直接处理16kHz采样的语音输入。项目提供使用示例和评估脚本,便于用户应用和评估。模型采用16kHz采样率,无需额外语言模型即可使用。项目还包含详细的使用说明和评估方法,有助于研究人员和开发者快速集成和测试。
data2vec-audio-base-960h - 利用自监督学习提升语音识别效率的开源框架
Data2VecGithubHuggingfaceTransformer开源项目模型自动语音识别自监督学习语言模型
Data2Vec是一种开源模型,基于Librispeech数据集进行960小时的16kHz语音音频的预训练和微调,在语音识别领域表现优异。利用自监督学习与自蒸馏手段,Data2Vec准确提取上下文信息,优化了自动语音识别的表现。在LibriSpeech的测试中,取得了“clean”任务2.77和“other”任务7.08的词错误率(WER),体现了其在业内的竞争力。
parakeet-rnnt-1.1b - 高性能英语语音识别模型实现优异音频转文本效果
FastConformerGithubHuggingfaceNeMoTransducer开源项目模型自动语音识别英语语音模型
parakeet-rnnt-1.1b是NVIDIA NeMo和Suno.ai联合开发的英语语音识别模型。基于FastConformer Transducer架构,该模型拥有11亿参数,在64000小时英语语音数据上训练。它能准确将语音转录为小写英文文本,并在多个标准数据集上表现出色。研究人员可通过NeMo工具包使用该模型进行推理或微调,适用于多种语音识别场景。
wav2vec2-xlsr-53-espeak-cv-ft - 基于Wav2Vec2的跨语言零样本音素识别模型
GithubHuggingfaceWav2Vec2多语言模型开源项目模型语音识别跨语言识别音素识别
此模型在wav2vec2-large-xlsr-53预训练基础上,利用多语言Common Voice数据集微调,实现了多语言音素识别。通过将训练语言音素映射至目标语言,该模型采用简单有效的跨语言零样本学习方法。相比先前研究,此方法显著提升了性能,为多语言语音识别领域提供了一个简洁而强大的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号