Project Icon

DCNv4

为视觉应用设计的高效算子,通过优化空间聚合和内存访问

DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。

imgclsmob - 深度学习卷积网络的研究与实现,涵盖多种框架和预训练模型
GithubMXNetPyTorchTensorFlowcomputer visiondeep learning开源项目
此存储库专注于计算机视觉领域的卷积网络研究,包含多种分类、分割、检测和姿态估计模型的实现,支持MXNet/Gluon、PyTorch、Chainer、Keras和TensorFlow等框架。提供了训练、评估和转换的脚本以及针对不同框架的PIP包,模型预训练于ImageNet、CIFAR-10/100、SVHN等数据集,能够自动加载预训练权重。
MiniGPT4-video - 提升视频理解的创新多模态语言模型
GithubGoldfishMiniGPT4-Video多模态开源项目视频理解长视频
MiniGPT4-Video项目采用交错视觉-文本标记技术,大幅提升了多模态大语言模型的视频理解能力。该模型在短视频理解方面表现优异,多项基准测试中均优于现有方法。项目还开发了Goldfish框架,专门应对任意长度视频的处理难题,有效解决了长视频理解中的噪声、冗余和计算挑战。这些创新成果为视频分析和理解领域开辟了新的可能性。
Depth-Anything - 大规模无标注数据驱动的强大单目深度估计模型
Depth AnythingGithub人工智能图像处理开源项目深度估计计算机视觉
Depth Anything是一款基于大规模数据训练的单目深度估计模型。它利用150万标注图像和6200万无标注图像进行训练,提供小型、中型和大型三种预训练模型。该模型不仅支持相对深度和度量深度估计,还可用于ControlNet深度控制、场景理解和视频深度可视化等任务。在多个基准数据集上,Depth Anything的性能超越了此前最佳的MiDaS模型,展现出优异的鲁棒性和准确性。
DMD2 - 改进分布匹配蒸馏的快速图像合成技术
AI绘图DMD2Github图像生成开源项目文本生成图像模型蒸馏
DMD2是一种改进的分布匹配蒸馏技术,用于快速图像合成。通过消除回归损失、集成GAN损失和支持多步采样,该技术显著提升了图像生成的质量和效率。在ImageNet-64x64和COCO 2014数据集上,DMD2的FID评分超越原始模型,同时将推理成本降低500倍。此外,DMD2还能生成百万像素级图像,在少步方法中展现出卓越的视觉效果。
controlnet-depth-sdxl-1.0 - ControlNet Depth与Stable Diffusion XL结合提升图像生成质量
ControlNetGithubHuggingface图像处理图像生成开源项目模型深度学习深度检测
项目ControlNet Depth SDXL 1.0结合Zoe和Midas检测器,通过ControlNet与Stable Diffusion XL技术提升图像生成的质量与多样性。该工具支持不同分辨率的图像处理,可选择双重检测器和多种调度器优化生成过程,是实现高质量图像生成的强大解决方案。
CustomNet - 创新的物体定制与多视角生成扩散模型
CustomNetGithub对象定制开源项目文本生成图像深度学习视角控制
CustomNet是一个创新的文本到图像扩散模型框架,专注于物体定制和多视角生成。该模型整合了3D新视角合成能力,实现物体空间位置和视角的灵活调整,同时保持物体身份。CustomNet无需测试时优化,可同时控制视角、位置和文本,在身份保持、多样性和协调性方面表现出色。这一技术为物体定制和图像生成领域开辟了新的可能性。
torch-conv-kan - 引入基于Kolmogorov-Arnold表示理论的高效卷积神经网络
CUDAConvolutional layersGithubKolmogorov-Arnold NetworksPyTorchTorchConv KAN开源项目
项目展示了使用PyTorch和CUDA加速的Kolmogorov-Arnold网络(KAN)模型的训练、验证和量化,支持MNIST、CIFAR、TinyImagenet和Imagenet1k数据集的性能评估。当前项目持续开发,已发布涉及ResNet、VGG、DenseNet、U-net等架构的新模型和预训练权重,适用于医疗图像分割和高效卷积神经网络的进一步研究和优化。
generative-models - SV4D与SV3D一类的创新模型
GithubSDXL-TurboSV3DSV4D开源项目热门稳定AI视频合成
Generative Models项目展示了多个创新模型如SV4D与SV3D,专注于视频到4D扩散建模和图像到视频的多视角合成,旨在提供高分辨率和时间连贯性的研究工具。最新技术报告和视频概览现已发布,支持通过简单的脚本和快速入门指南直接体验模型效果,适用于研究及教育用途。
DAMO-YOLO - 基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术的对象检测算法
DAMO-YOLOGithub开源项目性能优化检测模型目标检测算法更新
DAMO-YOLO, 阿里巴巴DAMO实验室的先进对象检测技术,基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术,以优化性能和效率。针对广泛行业场景,提供一站式解决方案,从训练到部署全面支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号