Project Icon

DCNv4

为视觉应用设计的高效算子,通过优化空间聚合和内存访问

DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。

FocalNet - 突破注意力机制的新型视觉模型架构
FocalNetsGithub卷积神经网络图像分类开源项目目标检测语义分割
FocalNet是一种创新的视觉模型架构,无需使用注意力机制。其核心的焦点调制技术在多项视觉任务中超越了现有的自注意力方法。该模型在ImageNet分类和COCO检测等基准测试中表现优异,同时保持了高效简洁的实现。FocalNet具有平移不变性、强输入依赖性等特点,为计算机视觉领域提供了一种全新的建模思路。
controlnet-tile-sdxl-1.0 - ControlNet技术在图像处理中的最新应用探索
ControlNet Tile SDXLGithubHuggingface人工智能图像去模糊图像超分辨率开源项目模型生成式图像处理
该项目展示了如何利用ControlNet技术实现图像的去模糊、变体生成和超分辨率处理。通过整合多种图像处理器和pipelines,支持多种比率和倍数的放大,简化了操作过程,并提高了图像质量。项目代码提供了应用高斯模糊、引导滤波及多维采样的示例,可以通过详细提示生成更高质量和多样化的图像,提高细节再现能力。
yolov5 - 视觉AI对象检测和图像分类技术
YOLOv5,一款由Ultralytics开源的视觉AI模型,支持对象检测、图像分割与分类。提供全面文档及社区支持,适合各级用户使用,并定期更新以集成最新技术。
convnext-tiny-224 - 高效图像分类 ConvNeXT卷积神经网络的新突破
ConvNeXTGithubHuggingfaceImageNetResNetVision Transformers图像分类开源项目模型
ConvNeXT是一款卷积模型,具有优于Vision Transformers的表现。设计灵感源于Swin Transformer,并对ResNet进行了现代化调整,专注于图像分类。ConvNeXT-tiny-224在ImageNet-1k数据集训练后,提供高效的分类能力。模型集线器提供适用不同任务的微调版本。
detr-resnet-50-panoptic - DETR模型:结合ResNet-50的端到端目标检测与全景分割
DETRGithubHuggingfaceTransformer开源项目模型目标检测计算机视觉语义分割
DETR-ResNet-50是一种创新的目标检测模型,融合了Transformer和卷积神经网络技术。该模型在COCO数据集上训练,支持端到端的目标检测和全景分割。通过100个对象查询机制,DETR实现了高效准确的目标识别。在COCO 2017验证集上,模型展现出优秀性能:框AP为38.8,分割AP为31.1,全景质量(PQ)达43.4。这一模型为计算机视觉任务提供了新的解决方案。
CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
rtdetr_r101vd_coco_o365 - 实时目标检测革新者RT-DETR超越传统性能表现
GithubHuggingfaceRT-DETR开源项目模型模型训练深度学习目标检测计算机视觉
RT-DETR通过混合编码器架构和不确定性最小化查询选择方法实现目标检测任务。在COCO数据集测试中,RT-DETR-R101版本达到56.2% AP精度,T4 GPU上处理速度为74 FPS。模型可通过调整解码器层数实现速度与精度的灵活平衡,为实时目标检测领域提供新的技术方案。
YOLOv6 - 高性能目标检测框架支持多场景应用
GithubYOLOv6开源项目模型训练深度学习目标检测计算机视觉
YOLOv6是一款高效的目标检测框架,提供从轻量级到大型的多种模型选择。它在速度和精度上取得平衡,支持量化和移动端部署,适用于各种实时检测场景。最新版本还引入了分割功能,扩展了应用范围。YOLOv6不仅适用于工业领域,还可广泛应用于安防、交通等多个领域。
ldm-super-resolution-4x-openimages - 基于潜在扩散模型的图像超分辨率开源工具
GithubHuggingfaceLDM图像处理图像超分辨率开源项目模型深度学习神经网络
ldm-super-resolution-4x-openimages项目利用潜在扩散模型技术实现图像超分辨率处理。该项目在预训练自编码器的潜在空间中应用扩散模型,平衡了计算资源消耗与图像细节保留。项目支持图像4倍放大,并提供了完整的推理pipeline,适用于图像修复、无条件生成和语义场景合成等任务。
CVPR2023-DMVFN - 动态多尺度体素流网络在视频预测领域的应用
CVPR2023GithubSOTA模型动态多尺度体素流网络开源项目数据集视频预测
本项目介绍了一种在视频预测领域的新模型——动态多尺度体素流网络。该模型由CVPR2023收录并成为亮点,通过对Cityscapes、KITTI及DAVIS等多个数据集的训练和测试,展示了其在视频预测中的表现。项目页面包括详细的安装、数据准备、训练和测试步骤,并提供丰富的可视化结果和资源链接,支持预训练模型的下载以便实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号