Project Icon

VideoMamba

突破性的视频理解状态空间模型

VideoMamba是一种创新的视频理解模型,克服了现有技术的局限性。它能高效处理长视频和高分辨率内容,展现出可扩展性、短期动作识别敏感性、长期视频理解优势和多模态兼容性四大核心特点。VideoMamba为全面的视频理解任务提供了高效解决方案,推动了该领域的发展。

MimicMotion - 基于AI的高质量人体动作视频生成框架
AIGithubMimicMotion人体动作开源项目深度学习视频生成
MimicMotion是一个创新的视频生成框架,可基于任意动作指导生成高质量的长视频。该项目采用置信度感知的姿态引导技术,提高了时间平滑性和模型鲁棒性。通过区域损失放大和渐进式潜在融合策略,MimicMotion有效解决了图像失真问题,并能以较低的资源消耗生成长视频。这一技术在视频质量、控制性和生成长度等方面显著优于现有方法,为人体运动视频生成领域开辟了新的可能性。
VideoGPT-plus - 双编码器融合提升视频理解能力
GithubVideoGPT+人工智能多模态模型开源项目视频对话视频理解
VideoGPT+是一个创新的视频对话模型,通过集成图像和视频编码器,实现了更精细的空间理解和全局时间上下文分析。模型采用自适应池化技术处理双编码器特征,大幅提升了视频基准测试性能。项目同时推出VCG+ 112K数据集和VCGBench-Diverse基准,为视频对话任务提供全面评估。VideoGPT+在空间理解、推理和视频问答等多项任务中表现优异。
MovieChat - 高效长视频处理工具
AIGithubMovieChat开源项目机器学习视频理解长视频
MovieChat能够在24GB显卡上处理超过1万帧的视频,与其他方法相比,GPU显存成本平均减少10000倍(21.3KB/f到约200MB/f)。它集成了视频问答、情感分析和场景理解等功能,显著提高了长视频处理的效率和准确性,适用于大型视频数据集和复杂视频场景的智能问答系统。
MVision - 前沿机器视觉与智能算法技术集合
GithubSLAM技术开源项目无人驾驶机器视觉深度学习计算机视觉
MVision专注于探索机器视觉与人工智能的前沿研究和应用。该平台涵盖自然语言处理、深度学习和计算机视觉课程等多个方面,提供如ICDM、NIPS等重要会议的资源链接和最新机器学习研究文献。同时,MVision也关注无人驾驶、动态物体检测等实际应用领域,致力于提供全面的学习和实践资源,以推动技术进步和行业发展。
Video-LLaVA - 统一视觉表示学习的新方法 增强跨模态交互能力
GithubVideo-LLaVA图像理解多模态开源项目视觉语言模型视频理解
Video-LLaVA项目提出了一种新的对齐方法,实现图像和视频统一视觉表示的学习。该模型在无图像-视频配对数据的情况下,展现出色的跨模态交互能力,同时提升图像和视频理解性能。研究显示多模态学习的互补性明显改善了模型在各类视觉任务上的表现,为视觉-语言模型开发提供新思路。
XMem - 长时视频对象分割的解决方案,基于人类多尺度记忆模型
Atkinson-Shiffrin记忆模型ECCVGPU内存优化GithubXMem开源项目视频对象分割
XMem项目采用Atkinson-Shiffrin记忆模型,提供了一种全新的视频对象分割(VOS)方法。通过结合不同时间尺度的记忆单元,有效避免在处理长时视频时出现的计算和GPU内存问题。XMem可处理超过10000帧的视频,在有限GPU资源下仍保持高效,处理速度达每秒20帧,并附带简化版GUI。项目中还提供了详细的训练和推理指南,适用于实验和实际应用。
RobustVideoMatting - 实现实时且高分辨率的视频抠图技术
GithubPyTorchRVMRobust Video Matting实时性能开源项目热门视频抠图
RobustVideoMatting(RVM)是针对视频中人物进行抠图的专利技术,采用循环神经网络结构优化视频帧的时序处理,无需额外输入即可实现实时抠图。该项目支持4K 76FPS和HD 104FPS的实时处理速度,可广泛应用于各种视频编辑和增强场景。
XMem2 - 少量标注实现高精度视频分割的开源工具
GithubXMem++交互式标注人工智能开源项目视频分割计算机视觉
XMem2是一个开源的交互式视频分割工具,通过永久记忆模块和创新帧选择算法,只需少量标注即可实现高质量分割。它能以30+ FPS的速度处理物体部件、流体、可变形物体等复杂场景。XMem2提供改进的GUI和Python接口,适用于电影制作等领域。项目还包含PUMaVOS数据集,涵盖23个具挑战性的视频分割场景。
Mantis - 基于LLaMA-3的先进多图像理解AI模型
GithubLLaMA-3Mantis人工智能多图像指令调优大型多模态模型开源项目
Mantis是基于LLaMA-3的大型多模态模型,专注于多图像视觉语言任务。通过在Mantis-Instruct数据集上进行36小时的指令微调,该模型在5个多图像基准测试中实现了领先性能。Mantis能处理交错的文本和图像输入,有效应对复杂多图像任务,同时保持出色的单图像处理能力。项目开源了代码、模型和演示,为AI研究和开发提供了强大的多图像处理工具。
LVM - 大规模视觉模型的创新顺序建模方法
GithubLVM大规模视觉模型序列建模开源项目视觉句子视觉预训练模型
LVM是一种创新视觉预训练模型,将多种视觉数据转化为视觉句子,并进行自回归式标记预测。该模型采用顺序建模方法,无需语言数据即可学习大规模视觉模型。通过设计视觉提示,LVM可解决多种视觉任务。兼容GPU和TPU,为大规模视觉模型学习提供新方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号