Project Icon

R2R

在生产环境中构建、扩展和管理面向用户的检索增强生成应用程序

R2R旨在弥合本地LLM实验与可扩展的生产级检索增强生成(RAG)应用之间的差距。R2R提供最新的RAG技术,基于RESTful API构建,使用简便。其主要功能包括多模态支持、混合搜索、图形RAG、应用管理、可观察性、可配置性和扩展性。通过R2R仪表板用户界面,可直观管理和分析RAG引擎性能。

RAG_Techniques - 先进RAG技术集合优化检索增强生成系统
GithubRAG信息检索开源项目机器学习检索增强生成自然语言处理
本项目汇集22种先进RAG技术,涵盖简单RAG到复杂可控代理等多种方法,包括上下文丰富、多方面过滤、融合检索和智能重排序等。这些技术旨在提高检索增强生成系统的准确性、效率和上下文丰富度,为研究人员和实践者提供全面实施指南,助力开发更高效RAG系统。
RAG - 优化检索增强生成技术的最佳实践探索
GithubRAGGA开源项目最佳实践检索增强生成深度学习论文实现
RAGGA是一个实现检索增强生成(RAG)技术最佳实践的开源项目。基于论文研究,项目提供RAG系统性能优化方法和策略,包含代码实现和复现指南。RAGGA通过实验验证了多种RAG技术优化策略,包括检索方法改进、上下文融合等。这些发现对于提升自然语言处理任务的性能具有重要意义,为RAG技术研究和应用提供了重要参考资源。
RAG-Survey - AI内容生成中的增强检索方法全面指南
AI生成内容GithubRAGRetrieval-Augmented Generation大型语言模型开源项目知识增强
深入探索增强检索技术如何推动AI内容生成的进步。RAG-Survey项目综合最新研究,涵盖查询基准、潜在表达式和逻辑基础RAG等多种方法,持续更新其调研报告和文献库。项目专注于提升检索增强生成模型,精准高效地应用于开放域问答、代码生成等多个AI领域。
rag - 高效检索增强生成系统RAG实现
GithubLLMRAGtxtai向量搜索图搜索开源项目
RAG with txtai项目实现了一个基于Streamlit的检索增强生成应用。系统集成了向量RAG和图RAG两种方法,通过控制语言模型的上下文来增强回答的准确性。项目支持Docker容器和Python虚拟环境部署,可灵活添加自定义数据并通过环境变量配置模型参数。这一versatile的RAG系统适用于广泛的知识检索和智能问答应用场景。
Easy-RAG - 构建高效RAG系统 集成多功能知识库和先进对话能力
Easy-RAGGithub向量数据库大模型聊天开源项目知识图谱知识库
Easy-RAG是一个功能全面的检索增强生成(RAG)系统,支持多种文件格式的知识库管理。系统整合了Chroma、FAISS等向量数据库,并采用rerank技术提高信息检索效率。它具备纯大模型多轮对话和基于知识库的问答能力,适合学习、使用和自主扩展。Easy-RAG还支持音频视频的语音转文本功能,为构建智能对话系统提供了全面的解决方案。
fastRAG - 检索增强生成模型的构建与应用探索
ColBERTGithubHaystackLLMONNX RuntimefastRAG开源项目
fastRAG是一个专为构建和优化检索增强生成模型的研究框架,集成了最先进的LLM和信息检索技术。它为研究人员和开发人员提供了一整套工具,支持在Intel硬件上进行优化,并兼容Haystack自定义组件。其主要特点包括对多模态和聊天演示的支持、优化的嵌入模型和索引修改功能,以及与Haystack v2+的兼容性。
AutoRAG - 自动优化检索增强生成流程的开源工具
AutoRAGGithubRAG优化开源项目数据处理自动化评估部署
AutoRAG是一个开源的检索增强生成(RAG)自动优化工具,专门为特定数据和用例寻找最佳RAG流程。该工具支持自动评估多种RAG模块组合,简化了最优方案的发现过程。AutoRAG提供简洁的代码接口和命令行操作,方便用户快速评估、部署和共享优化后的RAG流程。此外,AutoRAG还集成了多种评估指标、支持模块、可视化仪表板和Web界面,使RAG技术的应用更加便捷高效。
LongRAG - 改进长文本LLM的检索增强生成框架
GithubLongRAGTevatronWikipedia数据开源项目检索增强生成长上下文LLM
LongRAG项目推出新型检索增强生成框架,采用4K token长检索单元提升RAG性能。项目核心包括长检索器和长阅读器,平衡检索与阅读任务复杂度。除提供完整代码实现,还开放处理后的语料库数据集。这为研究长文本LLM与RAG结合提供了重要资源,有助于探索该领域的未来发展方向。
Awesome-RAG - 深入探索RAG的最佳实践与常见挑战
全面了解Retrieval Augmented Generation (RAG),涵盖对话路由、LLM模型、向量检索、提示策略、生成、评估、性能与成本、隐私和安全等方面的实践与挑战。探索先进的RAG模式、多模态RAG、知识图谱和自动提示优化等技术,提升生成质量和可靠性。
ragas - 高效评估与优化RAG管道性能的框架
GithubLLMRAGRagas开源项目性能监控评估框架
Ragas是一款工具集,用于评估、监控和优化RAG(检索增强生成)应用的性能,特别适合生产环境中的大语言模型(LLM)。Ragas集成了最新研究成果,能在CI/CD流程中进行持续检查,确保管道性能稳定。通过简单的安装和快速入门示例,用户可以快速体验Ragas的功能,并参与社区讨论LLM和生产相关问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号