Project Icon

R2R

在生产环境中构建、扩展和管理面向用户的检索增强生成应用程序

R2R旨在弥合本地LLM实验与可扩展的生产级检索增强生成(RAG)应用之间的差距。R2R提供最新的RAG技术,基于RESTful API构建,使用简便。其主要功能包括多模态支持、混合搜索、图形RAG、应用管理、可观察性、可配置性和扩展性。通过R2R仪表板用户界面,可直观管理和分析RAG引擎性能。

cognita - RAG系统模块化与扩展平台
APICognitaGithub向量数据库开源项目索引部署
Cognita整合了Langchain和LlamaIndex技术,提供了一套模块化且API驱动的RAG组件和无代码UI,适合本地及生产环境使用。新功能包括内置Metadatastore、Docker Compose快速部署及多样化的嵌入和重排序服务。此平台使得用户无需代码即可管理文档和实施QnA,优化了试验和部署的效率。
rag-gpt - 集成前端、后端及管理控制台能够快速部署智能客服系统
GithubLLMRAG-GPT后台管理开源项目智能客服系统部署
RAG-GPT项目允许用户利用Flask, LLM及RAG快速启动一个智能客服系统,整合了前端、后端和管理控制台。支持多种知识库的集成,配置灵活,界面友好,可在五分钟内部署生产级会话服务。适用于需要高效、高可定制的客服解决方案的业务。RAG-GPT为企业提供了一个多面的、易于配置的智能客服平台,支持Docker直接部署或源代码部署,兼容多种大型语言模型(Large Language Models),如OpenAI的GPT和Moonshot,满足各型企业的需求。
Verba - 开源RAG应用程序实现智能文档检索与问答
GithubRAGVerba人工智能开源项目数据查询
Verba是一款开源的检索增强生成(RAG)应用程序,提供端到端的简便界面。支持多种模型和数据类型,可在本地或云端部署。该应用程序允许用户探索数据集、提取见解,并通过自然语言与文档交互。Verba整合了先进的RAG技术和Weaviate的上下文感知数据库,可根据具体需求选择RAG框架、数据类型、分块和检索技术以及LLM提供商。这为文档问答和知识库分析提供了灵活而强大的解决方案。
KG_RAG - 解锁医学知识图谱的力量和KG-RAG框架概述
GPTGithubKG-RAG大型语言模型开源项目生物医学知识图谱
KG-RAG,一种融合生物医学知识图谱SPOKE与大型语言模型的检索增强生成系统,专为提升特定领域的语义理解而设计。了解其配置、运行方法及在生物医学应用中的实例。
GNN-RAG - 结合图神经网络和检索增强生成的知识图谱问答方法
GNN-RAGGithub图神经网络大语言模型开源项目检索增强生成知识图谱问答
GNN-RAG项目探索了图神经网络在大语言模型推理中的应用。该方法在密集子图上进行推理,检索候选答案和推理路径,结合了GNN的结构化推理和LLM的自然语言处理能力。项目提供了GNN实现和基于RAG的LLM问答系统的代码,以及实验结果。研究表明,这种方法在知识图谱问答任务中具有提升性能的潜力。
FlashRAG - 检索增强生成研究的Python工具库
FlashRAGGithubPython工具包复现研究开源项目检索增强生成自定义组件
FlashRAG是一个专为检索增强生成(RAG)研究设计的Python工具库。该库预处理了32个RAG基准数据集,实现了14种先进RAG算法。FlashRAG提供检索器、重排器、生成器和压缩器等组件,支持灵活构建RAG流程。通过整合vLLM、FastChat和Faiss等工具,FlashRAG优化了执行效率。研究人员可借助该库轻松复现已有RAG方法或开发新的RAG流程。
rag-search - 智能数据检索和排名优化工具
API 请求FastAPIGithubRAG Search APIthinkany.ai开源项目机器学习模型
RAG Search API是由thinkany.ai开发,旨在优化搜索结果的效率与准确性。这一API实现了多样化的搜索功能,包括信息重排、筛选详细数据等,并能通过FastAPI快速部署。其简便的安装过程使得开发者能够轻松集成此技术,从而提升数据处理的效能。
ragna - 高效灵活的RAG编排框架简化AI应用开发
GithubRAG编排框架Ragna开源项目文档检索自然语言处理
Ragna是一个RAG(检索增强生成)编排框架,旨在简化AI应用开发过程。该框架支持Python API、REST API和Web应用界面,方便开发者构建和部署基于RAG的智能系统。Ragna的设计注重灵活性和可扩展性,适应多种AI应用场景。该框架有助于加速智能解决方案的开发,促进AI技术在各领域的应用。
PongoAI - 智能优化检索增强生成流程的工具
AI工具PongoAIRAG技术上下文检索性能监控语义过滤
PongoAI专注优化检索增强生成(RAG)流程。通过单行代码实现RAG监控和改进,提供实时结果重排序、性能分析和自动修复。该工具显著提高相关答案比例,减少错误生成,增加AI产品使用率。
MultiHop-RAG - 评估跨文档RAG能力的多跳查询数据集
GithubMultiHop-RAG元数据开源项目检索增强生成跨文档评估问答数据集
MultiHop-RAG是一个评估检索增强生成(RAG)系统跨文档能力的问答数据集。它包含2556个多跳查询,每个查询的证据分布在2至4个文档中,并考虑文档元数据,模拟真实RAG应用中的复杂场景。该项目提供检索和问答示例以及评估脚本,帮助研究人员和开发者改进RAG系统的多文档推理能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号