Project Icon

reinforcement-learning-an-introduction

Sutton & Barto《强化学习: 介绍 (第2版)》的Python实现

该项目提供了Sutton和Barto所著《Reinforcement Learning: An Introduction(第2版)》的Python代码实现,涵盖各章节的示例和性能分析。项目专注于强化学习核心算法的实现和优化,适合打算深入了解和应用强化学习技术的开发者与研究人员。欢迎交流、贡献代码,提升项目质量与完整性。

ML-From-Scratch - 深入理解机器学习算法,从基础到实际案例
GithubMachine LearningPythonReinforcement LearningSupervised LearningUnsupervised Learning开源项目
本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
A2CDQNDeepRLGithubPyTorch开源项目深度强化学习
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
DRL-Pytorch - PyTorch实现的深度强化学习算法集合
DRL算法GithubPyTorch人工智能开源项目强化学习深度学习
DRL-Pytorch项目提供多种常用深度强化学习算法的PyTorch实现,包括Q-learning、DQN变体、PPO、DDPG、TD3和SAC等。代码结构清晰统一,便于研究人员和开发者比较不同算法。项目还包含详细使用说明、依赖列表和学习资源推荐,有助于快速入门和实践。
awesome-exploration-rl - 强化学习探索策略全面指南
Github实验开源项目强化学习探索方法环境算法
该项目聚焦强化学习探索方法,提供最新研究论文、分类体系和可视化案例。涵盖经典和前沿探索策略,持续追踪领域进展。对研究人员和实践者而言是宝贵参考,可用于研究探索-利用权衡或解决具体挑战。项目内容全面且定期更新,是强化学习探索领域的重要资源库。
awesome-deep-rl - 深度强化学习领域的最新研究综述与应用案例
Deep Reinforcement LearningGithubModel-basedPolicy GradientReinforcement LearningUnsupervised RL开源项目
该项目收录了深度强化学习领域的重要研究成果和应用示例,包括最新的学术论文、框架、算法和应用案例,覆盖无监督、离线、价值基础和策略梯度等多种方法。项目内容经常更新,提供最新的研究动态和工具,如2024年的HILP与2022年的EDDICT。适合从事人工智能、机器学习和强化学习的专业人员与爱好者了解该领域的最新进展。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorchGithubPyTorch开源项目机器学习深度学习编程
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
Popular-RL-Algorithms - 流行强化学习算法的PyTorch实现与评估
GithubPyTorch开源代码开源项目强化学习性能对比算法实现
Popular-RL-Algorithms项目实现了SAC、DDPG、TD3、PPO等多种流行强化学习算法的PyTorch版本。项目提供了算法的多种实现以便比较,并包含奖励归一化、多进程训练等实用技巧。通过在OpenAI Gym环境中的性能展示,为强化学习研究和应用提供了参考。
autonomous-learning-library - PyTorch深度强化学习库助力智能代理开发
GithubPyTorch开源项目智能体深度强化学习算法实现自主学习库
autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。
machine_learning_basics - 纯Python实现机器学习算法 助力深入理解基础原理
GitHubGithubPython开源项目数据预处理机器学习算法实现
该开源项目提供多种机器学习算法的纯Python实现,包括线性回归、决策树和k-means聚类等。项目注重展示算法底层结构,而非追求最高效率。另外还包含数据预处理教程,涵盖图像和数值/分类数据集处理。代码支持在线运行,便于快速实验。作为机器学习入门资源,适合想深入理解算法原理的学习者。
Dive-into-DL-TensorFlow2.0 - TensorFlow 2.0 深度学习中文教程与代码实现
GithubTensorFlow2代码重构动手学深度学习开源项目机器学习深度学习
本项目将《动手学深度学习》一书中的MXNet代码改为TensorFlow 2.0实现,提供完整的中文学习资源,涵盖线性回归、卷积神经网络、循环神经网络等核心内容。适合对深度学习感兴趣的初学者,只需掌握基础数学和Python编程即可入门。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号