Project Icon

sports

使用YOLOv5和ByteTrack追踪足球运动员,结合YOLOv7进行3D姿势估计及GPT-4V分析队服颜色分配球员

本文介绍了如何在足球赛事中使用YOLOv5和ByteTrack技术进行球员追踪,使用YOLOv7实现3D姿势估计,并通过GPT-4V基于球衣颜色分配球员。文章包含技术应用示例、实现方法以及相关视频和代码资源,旨在帮助读者更好地理解和应用这些技术。

MocapNET - 基于RGB图像的3D人体姿态实时估计
3D姿态估计GithubMocapNETRGB图像Tensorflow实时性能开源项目
MocapNET项目通过2D关节估计,将单目RGB图像转换为3D人体姿态,实现实时估计。它采用NSRM表示法、新的人体方位分类器和复合神经网络,能够在显著遮挡情况下精确恢复人体姿态。通过逆运动学解算器,MocapNET显著提升了人体姿态估计的准确性。最新的MocapNET v4版本用Python重写,支持3D凝视和BVH面部配置检索,并提供一键Google Collab部署和Blender 3D编辑器插件。项目不断更新,旨在提高其对社区的实用性和可访问性。
Hooper - 智能篮球数据分析和自动集锦生成应用
AI工具AI混剪Hooper比赛回放篮球统计运动数据分析
Hooper是一款利用人工智能技术的篮球数据分析应用,可通过手机视频自动生成比赛统计和精彩集锦。支持从1v1到5v5的各种比赛形式,适用于街球和正式赛事。该应用能自动跟踪球员表现,生成详细数据和精彩时刻剪辑,为篮球爱好者提供专业级的分析和视频服务,助力比赛回顾和技能提升。
virtual-background - 浏览器内实时视频流虚拟背景替换,支持多个机器学习模型
BodyPixGithubML KitMediaPipeVirtual BackgroundWebAssembly开源项目
该项目展示了如何在浏览器实时视频流中,添加虚拟背景并切换三种预训练机器学习模型,包括BodyPix、MediaPipe Meet Segmentation和ML Kit Selfie Segmentation。用户可以对桌面和移动设备上的不同模型性能进行比较。此项目提供了详细的实现细节、性能分析及改进建议。
MonocularTotalCapture - 单目3D人体姿态全方位捕捉系统
3D建模Adam模型Github人体姿态估计开源项目深度学习计算机视觉
MonocularTotalCapture是一个开源项目,旨在实现野外环境下的单目3D人体姿态全方位捕捉。该系统同时捕捉人脸、身体和手部姿态,采用Adam可变形人体模型和OpenPose技术。基于CVPR19研究成果,项目提供完整的安装使用指南,为计算机视觉研究和3D重建提供了有力工具,仅限非商业研究使用。
SparseTrack - 多目标跟踪新方法:基于伪深度的场景分解技术
GithubSparseTrack伪深度场景分解多目标跟踪开源项目数据关联
SparseTrack提出了一种新的多目标跟踪方法,通过伪深度估计和深度级联匹配策略来分解密集场景。这种方法在MOT17和MOT20基准测试中表现出色,仅使用IoU匹配就达到了与复杂算法相当的性能。SparseTrack为解决拥挤场景中的多目标跟踪问题提供了新的思路,展示了简单方法在复杂任务中的潜力。
Realtime_Multi-Person_Pose_Estimation - 实时多人人体姿态估计的开源实现
CVPRGithubMSCOCO Keypoints ChallengeOpenPosePart Affinity FieldsRealtime Multi-Person Pose Estimation开源项目
该项目展示了一种无需人体检测器的实时多人人体姿态估计方法,曾获2016年MSCOCO关键点挑战赛冠军等多个奖项。项目提供了C++、TensorFlow、Pytorch等多种实现版本,适用于不同应用场景。页面还包括详细的测试与训练步骤,以及相关的代码库和资源链接,适合研究人员和开发者使用。
TF-SimpleHumanPose - 2D多人体姿态估计和追踪的简易基线方法
GithubMS COCOTensorFlow姿态估计开源项目简单基线跟踪
该项目是利用TensorFlow实现的2D多人体姿态估计与追踪代码库,兼容多个数据集如MPII、PoseTrack 2018和MS COCO 2017。其代码简洁灵活,提供训练、测试和可视化功能,并生成与MS COCO和PoseTrack兼容的输出文件。在CUDA和cuDNN环境的Ubuntu系统上进行多GPU训练和测试。
yolov8-face - YOLOv8优化的实时人脸检测与关键点定位框架
GithubYOLOv8人脸检测开源项目深度学习目标检测计算机视觉
yolov8-face项目基于YOLOv8架构,专注于人脸检测和关键点定位。该项目提供多个模型版本,涵盖轻量级到高精度的不同需求,适用于各种应用场景。支持Android和OpenCV等多平台部署,具备高精度和实时性能。新增的yolov8-lite系列进一步优化了模型大小和计算效率,使其更适合移动设备和嵌入式系统应用。
AvatarPoser - 革新全身姿态跟踪 仅需头手运动数据
AMASS数据集AvatarPoserGithubTransformer全身姿势跟踪开源项目混合现实
AvatarPoser是一项突破性的全身姿态预测技术,仅需头部和手部运动数据即可在世界坐标系中准确估计全身姿态。该方法结合Transformer编码器和运动解耦技术,通过逆运动学优化生成逼真动作。AvatarPoser在大型动作捕捉数据集上表现出色,并具备实时推理能力,为元宇宙应用中的全身虚拟形象控制提供了实用解决方案。
head-pose-estimation - 实时人脸姿态估计,使用ONNX Runtime和OpenCV进行处理
GithubONNX RuntimeOpenCV人脸检测头部姿态估计开源项目面部特征点检测
本项目提供了一个实时的人脸姿态估计解决方案,依赖于ONNX Runtime和OpenCV框架。主要步骤包括人脸检测、68个面部标志点检测以及姿态估计。支持Ubuntu 22.04,提供简单的安装步骤和预训练模型下载链接,使用户可以快速启动并运行。本项目支持视频文件和摄像头输入,提供了详尽的训练指导和代码库,确保了高度的灵活性和扩展性,适合开发和测试用途。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号