Project Icon

onnx-modifier

高效可视化编辑ONNX模型,自动处理减少重复工作

基于Netron和Flask的工具,提供完全可视化的ONNX模型编辑界面,通过Python ONNX API自动处理编辑信息。支持删除和添加节点、重命名节点和模型输入输出、编辑节点属性和模型初始值等多种操作,有效提升工作效率。该工具可通过命令行、可执行文件或Docker容器启动,适用于各种开发环境。

OneTrainer - 多功能稳定扩散训练平台
GithubOneTrainerStable Diffusion图像增强开源项目数据集工具训练方法
OneTrainer支持多种Stable Diffusion模型、训练方法和格式,提供全面的训练功能。其主要特色包括自动备份、图像增强、Tensorboard集成和多分辨率训练等。此外,还具备数据集和模型工具,便于自动化字幕生成和蒙版创建。OneTrainer兼具命令行和图形界面模式,支持通过详细文档和Discord社区进行交流和贡献。
neoml - 跨平台多语言支持的端到端机器学习框架
ABBYYGithubNeoMLONNX开源项目机器学习框架神经网络
NeoML是一个端到端机器学习框架,可用于构建、训练和部署模型,适用于计算机视觉和自然语言处理任务,如图像预处理、分类、OCR和数据提取。支持100多种神经网络层类型和20多种传统机器学习算法,兼容CPU和GPU,并支持ONNX格式。适用的编程语言包括Python、C++、Java和Objective-C,且可运行于Windows、Linux、macOS、iOS和Android平台。
model_server - 高性能AI模型部署系统 支持多框架和多设备
AI部署GithubOpenVINO Model Server开源项目微服务架构模型推理模型管理
OpenVINO Model Server是一个高性能AI模型部署系统,针对Intel架构优化。支持TensorFlow、PaddlePaddle和ONNX等多种框架,可在不同AI加速器上运行。系统通过gRPC和REST API提供服务,具备模型版本控制、动态输入和DAG调度等功能。适用于边缘计算和云环境,可提高资源利用率和推理效率。该系统还支持Python代码执行、gRPC流式传输和MediaPipe图形服务。OpenVINO Model Server适合微服务架构应用和Kubernetes环境部署,可实现水平和垂直推理扩展。
nnom - 适用于微控制器的神经网络库
GithubMicrocontrollerNNoMNeural Network开源项目灵活性高性能
NNoM 是为微控制器设计的高层次神经网络推理库,支持如 Inception、ResNet 和 DenseNet 等复杂结构,可一键部署 Keras 模型并提供用户友好的界面。其高性能后端选择和预编译功能确保了运行时零损耗,同时提供完整的评估工具如运行时分析和混淆矩阵。最新的 v0.4.x 版本新增了循环层(RNN)支持,并切换到更适合机器处理的结构化接口。与 TensorFlow Lite 和 STM32Cube.AI 的对比显示,NNoM 在推理时间和内存占用方面表现出色。
bge-large-en-v1.5 - Transformers.js适配的ONNX模型及其应用简介
GithubHuggingfaceONNXTransformers.js余弦相似度句子嵌入开源项目模型特征提取
该开源项目使用ONNX权重,以在Transformers.js环境下实现模型兼容。通过特征提取管道,用户能够高效计算句子嵌入,实现文本语义分析与快速检索,提升JavaScript环境下的文本处理效率。
MNN - 高效轻量的深度学习框架,支持多设备推理和训练
GithubMNN开源项目推理引擎深度学习框架轻量级高性能
MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。
NeMo - 人工智能训练和部署平台
GithubNVIDIA NeMo多模态模型大语言模型开源项目热门生成式AI语音识别
NeMo框架是NVIDIA开发的一款云原生生成式AI框架,专为研究人员和使用PyTorch的开发者设计,支持大型语言模型、多模态模型、自动语音识别等多个领域。该框架能够利用现有代码和预训练的模型检查点,帮助用户高效创建和定制新的生成式AI模型。通过广泛的教程和文档,用户可以轻松开始使用NeMo框架,无论是在任何云端还是本地环境中。
Onvo AI - 智能化嵌入式数据可视化仪表板平台
AI仪表盘AI工具Onvo AI数据分析数据可视化用户体验
Onvo AI是一款智能数据可视化平台,支持用户通过简单的自然语言提示快速创建交互式仪表板。无需编写代码或SQL查询,即可构建美观的数据可视化。该平台提供灵活的SDK和API,便于将仪表板集成到各类产品中。Onvo AI具备版本管理、用户权限控制和数据隐私保护等功能,适合不同规模的企业使用。平台支持多语言界面,整合多个数据源,为非技术用户提供自助式数据分析能力,简化数据分析流程,提升工作效率。
onnxruntime-genai - 设备端高效运行LLM模型的灵活解决方案
GithubLLMONNX Runtime开源项目模型架构生成式AI硬件加速
onnxruntime-genai是一个用于设备端高效运行大型语言模型的API。它支持Gemma、Llama、Mistral等多种模型架构,提供多语言接口。该项目实现了生成式AI的完整流程,包括预处理、推理、logits处理等。开发者可以使用generate()方法一次性生成输出或实现逐token流式输出。onnxruntime-genai为本地部署和运行LLM模型提供了简单、灵活、高性能的解决方案。
NeMo-Framework-Launcher - 云原生工具助力大规模AI模型高效训练
AI模型训练GithubNeMo Framework云原生工具分布式计算大规模语言模型开源项目
NeMo-Framework-Launcher是一个用于启动NeMo Framework训练作业的云原生工具。它专注于生成式AI模型的基础模型训练,集成了模型并行、分布式优化和混合精度训练等技术。该工具简化了在云端或本地集群上的训练流程,支持集群配置、数据处理、模型训练、微调和评估。适用于GPT、BERT和T5等模型,可扩展至数千GPU,支持大规模语言模型训练。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号