Project Icon

Infusion

基于扩散先验的3D高斯体场景修复技术

InFusion项目提出了一种创新的3D场景修复方法,通过学习扩散先验的深度完成来修复3D高斯体。该技术实现了对不完整3D场景的高质量修复,能够处理复杂的遮挡情况。InFusion为3D重建和虚拟现实等领域提供了新的解决方案,项目开源了推理代码和预训练模型,为相关研究和开发提供了重要资源。

DiffIR - 创新扩散模型提升图像修复效率
DiffIRGithubICCV2023图像恢复开源项目扩散模型深度学习
DiffIR是一种专为图像修复设计的创新扩散模型。它结合了紧凑的图像修复先验提取网络、动态图像修复变换器和去噪网络,相比传统扩散模型实现了更快速、稳定的图像恢复。在多项图像修复任务中,DiffIR展现出最先进的性能,同时大幅降低计算成本,为图像修复技术开辟了新的发展方向。
image-restoration-sde - 创新图像恢复方法 结合SDE和扩散模型的IR-SDE与Refusion
GithubIR-SDERefusionSDE图像恢复开源项目深度学习
该项目提出IR-SDE和Refusion两种图像恢复方法。IR-SDE采用均值回复随机微分方程,在多项任务中达到最优性能。Refusion整合潜空间扩散模型,可处理大尺寸真实图像。这些技术适用于合成和实际数据集,有效解决图像去雨、去雾、去阴影等问题。项目开源完整PyTorch实现代码,并提供预训练模型和使用指南。
GeoGaussian - 几何感知高斯分布的场景渲染新方法
3D GaussiansGithub几何约束场景渲染开源项目新视角合成点云
GeoGaussian是一种创新的场景渲染方法,利用几何感知的高斯分布优化来保持场景结构。它通过初始化表面对齐的薄高斯分布和约束优化,有效保持了场景的几何和纹理特征。该方法在新视角合成和几何重建方面表现优异,尤其适合结构化区域。项目开源了代码、数据集和使用说明,为计算机视觉研究提供了有价值的资源。
TriplaneGaussian - 基于Triplane和高斯散射的快速单视图3D重建技术
3D重建GithubTransformerTriplaneGaussian单视图开源项目高速重建
TriplaneGaussian是一种结合Triplane和高斯散射的3D重建技术。该方法采用混合Triplane-Gaussian 3D表示,融合显式和隐式表示优点,能在几秒内从单一视角图像生成高质量3D模型。这种技术不仅适用于合成图像,还能处理真实世界照片,展现了较强的泛化能力。TriplaneGaussian通过创新的表示方法实现了高效且通用的3D重建,为单视图3D重建领域提供了新的解决思路。
normal-depth-diffusion - 通用法线深度扩散模型实现高细节3D生成
3D模型AI生成GithubNormal-Depth Diffusion Model图像生成开源项目深度学习
Normal-Depth Diffusion Model是一个创新的文本到3D生成模型,采用法线深度扩散技术生成细节丰富的3D模型。该项目支持单视图和多视图生成,提供预训练权重、推理和训练代码,以及Objaverse数据集的多视图渲染图像。这一模型为3D内容创作开辟新途径,可应用于艺术设计等多个领域。
DiffBIR - 基于扩散模型的多任务盲图像修复方法
DiffBIRGithub人脸修复图像修复开源项目扩散模型盲图像超分辨率
DiffBIR是一种基于扩散模型的盲图像修复方法,可处理多种图像退化问题,如盲超分辨率、盲人脸修复和盲图像去噪。该方法采用两阶段架构,先进行退化移除,再利用IRControlNet重建图像。DiffBIR在真实世界图像上展现出优异的修复效果,能生成高质量、真实的细节。项目提供开源代码、预训练模型和详细使用说明。
CityGaussian - 大规模3D场景实时高质量渲染技术
3D场景渲染CityGaussianGithub大规模场景实时开源项目高质量
CityGaussian项目开发了一种创新的分而治之训练方法和细节层次(LoD)策略,用于高效训练和渲染大规模3D高斯溅射场景。该方法利用全局场景先验和自适应训练数据选择,实现高效训练和无缝融合。通过融合高斯基元生成不同细节层次,并采用块级细节层次选择和聚合策略,实现跨尺度的快速渲染。实验结果显示,CityGaussian在大规模场景上实现了先进的渲染质量,并能在不同尺度下保持一致的实时渲染性能。
epicrealism_pureevolutionv5-inpainting - Stable Diffusion专用的高质量图像修复模型
DiffusersGithubHuggingface人工智能开源许可开源项目机器学习模型深度学习
epicrealism_pureevolutionv5-inpainting是一个为Stable Diffusion开发的图像修复模型。该模型能够修复和增强图像中的缺失或损坏部分,提供逼真和自然的处理效果。通过先进的机器学习技术,模型可以理解图像上下文,生成与周围环境协调的修复内容。适用于多种图像编辑和修复任务,包括去除物体、修复老照片和填充缺失区域。模型支持多种常见图像格式,处理速度快,在图像修复质量上优于同类产品。
stable-diffusion-v1-5-inpainting - 稳定扩散修复模型,提升图像生成与修复能力
GithubHuggingfaceStable Diffusion Inpainting人工智能绘画创意图片生成图像修复开源项目文本生成图像模型
Stable Diffusion Inpainting是一种基于潜在扩散模型的图像生成工具,通过文本提示生成高质量图像,支持遮罩修复。其在LAION-5B数据集上进行训练,应用于艺术和设计领域,具备生成逼真图像的能力,但在复杂文本处理上存在局限。遵循CreativeML OpenRAIL-M许可,可保证合理安全使用。了解训练和应用场景将有助于更有效地进行创新项目开发。
One-2-3-45 - 2D扩散模型在3D AIGC中的创新应用
3D建模GithubHuggingFaceNeurIPS 2023One-2-3-45开源项目深度学习
One-2-3-45项目创新性地提出了一种2D扩散模型在3D AIGC中的正向操作方法,无需耗时的优化过程。项目提供详细的安装说明和多种演示方式,包括在线互动演示和完整的配置指南。通过整合Hugging Face的Gradio API,用户可以方便地进行图像预处理和3D网格重建。该项目已被NeurIPS 2023接受,并提供了详细的训练代码和数据集,促进单图像到3D模型的快速生成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号