Project Icon

AndroidTensorFlowMNISTExample

使用TensorFlow在Android平台上的MNIST手写数字识别示例

该项目展示了如何使用TensorFlow在Android平台上为MNIST数据集创建手写数字识别模型。用户无需自行构建库,可以直接通过Maven获取所需资源。项目提供了详细的模型训练步骤、资源链接及贡献指南,适合对机器学习和Android开发有兴趣的用户。

Tesseract4Android - 基于 Tesseract 的 Android OCR 库 支持多线程识别
Android开发GithubOCRTesseract4Android图像识别开源项目文字识别
Tesseract4Android 是一个重写的 Android OCR 库,基于 tess-two 项目。该库采用 CMake 构建,兼容最新 Android Studio,集成 Tesseract OCR 5.3.4。它提供标准单线程和 OpenMP 多线程两个版本,满足不同性能需求。Tesseract4Android 简化了 OCR 技术在 Android 应用中的使用,支持多语言识别,并附带示例应用展示基本用法。
TensorFlow-Tutorials - TensorFlow 2 深度学习教程
GithubKerasPythonTensorFlow开源项目教程深度学习
这些教程为深度学习和TensorFlow 2 的新手提供全面指导,涵盖简单线性模型、自然语言处理和图像生成等主题。每个教程附有详细代码示例和相应的YouTube视频讲解,帮助学习者快速掌握。适合希望深入了解TensorFlow及其应用的开发者和研究人员。
stanford-tensorflow-tutorials - CS 20课程的TensorFlow深度学习代码示例和课程进度
CS 20GithubPythonTensorFlowstanford-tensorflow-tutorials开源项目深度学习
提供斯坦福CS 20课程的TensorFlow代码示例和详细课程笔记,涵盖Python 3.6与TensorFlow 1.4.1,实时更新课程进度,包含前一年课程的资源。详细信息见课程大纲和设置指南。
TensorFlow-2.x-Tutorials - 详解TensorFlow 2.0教程,掌握深度学习模型与应用
GithubTensorFlow开源项目机器学习深度学习神经网络视频教程
本教程详细介绍了TensorFlow 2.0的安装与基础操作,并包含线性回归、MNIST、CIFAR10等多个实战案例。通过配套的视频资源,帮助数据科学家和AI研究人员掌握TensorFlow 2.0在深度学习中的实际应用。
tensorflow-101 - 面部表情识别、面部识别和外貌特征预测等应用的深度学习教程
GithubTensorFlow年龄和性别预测开源项目情感识别深度学习面部识别
该项目提供详尽的深度学习教程,包括面部表情识别、面部识别和外貌特征预测等应用。用户可以获取源代码和逐步教程,并使用Kaggle数据集进行训练。涵盖先进的识别模型如VGG-Face、FaceNet和DeepFace,适用于大规模数据集。此项目为深度学习开发者提供全面的学习资源,从基础到实战。
Tensorflow-Project-Template - 结合了简单性、文件夹结构的最佳实践和良好的 OOP 设计的简介深度学习项目模板
GithubOOP设计Tensorflow开源项目模板深度学习项目结构
一个设计简洁的深度学习项目模板,结合了简单性、良好的文件夹结构和优秀的OOP设计,帮助开发者更快地启动主要项目,专注于核心部分(如模型和训练)。模板封装了常见功能,使得开发者仅需更改核心内容即可轻松启动新的TensorFlow项目。主要组件包括模型、训练器、数据加载器和日志记录器,提供详细的使用示例和项目架构图。
learning-to-learn - TensorFlow和Sonnet在深度学习中的训练和评估优化指南
GithubSonnetTensorFlow优化器开源项目训练评估
了解如何使用TensorFlow和Sonnet在MNIST和CIFAR10等数据集上进行模型训练和评估。本文详细说明了命令行参数,涵盖了训练和评估的步骤,并介绍了从简单二次函数到复杂卷积神经网络的不同问题解决方案。掌握这些方法,可以实现自定义优化器并提高模型性能。
tensorflow - 开源机器学习平台的最新发展
APIGithubTensorFlow开源平台开源项目机器学习神经网络
TensorFlow是一个开源的机器学习平台,拥有完整的工具和资源生态系统。它由Google Brain团队开发,提供Python和C++的API支持,适应多种研究和应用需求。用户可以参照官方文档进行安装,包括使用pip、Docker以及从源码构建等方法。TensorFlow定期更新以提升性能和安全性。
hands-on-ml-zh - Sklearn和TensorFlow机器学习指南
GithubPythonSklearnTensorFlow开源项目数据分析机器学习
本指南详细介绍了如何使用Sklearn和TensorFlow进行机器学习,包括在线阅读、Docker镜像、PYPI包和NPM包的多种下载方式,并提供了完整的编译和安装步骤。通过该指南,读者能够学习和掌握数据分析及机器学习的实用技能。
tensorflow-speech-recognition - 开源TensorFlow中的语音识别示例
DeepSpeechGithubTensorflowWhisper开源项目深度学习语音识别
使用谷歌的TensorFlow框架进行语音识别,最初目标是为Linux系统创建独立的语音识别模型。尽管该项目现主要用于教学,开发者展示了使用开源数据和强大模型实现高效语音识别的潜力。推荐查看更新项目如Whisper和Mozilla的DeepSpeech,这两个项目在错误率方面的表现出色。该项目包含示例代码、依赖安装指导及功能扩展,如GPU上的WarpCTC和P2P学习模块。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号