Project Icon

LongLoRA

探索大规模长上下文语言模型的高效训练与实用应用

LongLoRA项目开发了一种高效微调方法,处理大型长上下文语言模型,涵盖了从7B至70B的各种模型规模和LongAlpaca-12k实验性数据集。项目支持多种微调方式,在基凊测试中验证了模型性能,技术可应用于多种NLP任务,助力复杂语言处理。实现显著性能优势,为企业和研究人员在从机器翻译到自动摘要等NLP任务中提供了有效的解决方案。

MicroLlama - 预算内的大规模语言模型构建:300M Llama模型的探索
GithubHuggingfaceMicroLlamahuggingface开源开源项目文本生成模型语言模型
该项目在有限预算内,通过全面开源的方法构建了一个300M Llama语言模型。尽管性能不及更大型的模型,但以不到500美元的投入,在多数据集上表现出色,并在与类似参数的BERT模型比较时展现优势。项目使用Vast.ai的计算资源和AWS S3存储,对TinyLlama模型进行了调整,重点优化Slimpajama数据集。这一项目展示了低成本大规模模型开发的潜力,并为细化应用如轻量级聊天机器人提供了坚实基础。
unit-minions - 自主训练LoRA以提升代码与文档生成效率
AI研发提效GithubLoRA代码生成开源项目测试代码生成用户故事生成
了解'unit-minions'如何利用LoRA模型进行自主训练,以显著提升软件开发周期中的AI辅助效能。项目内容包括完整的训练教程、操作视频以及代码实战演示,详细呈现从需求分析到代码生成的自动化全过程。通过LLaMA和ChatGLM LoRA模型,有效支持代码辅助、测试和需求详细化,旨在提供科学的工具优化工程师的工作流程,提升开发效率。
Meta-Llama-3.1-8B - Unsloth技术加速大语言模型微调并显著降低资源消耗
GithubHuggingfaceUnsloth开源项目微调性能优化模型语言模型
Meta-Llama-3.1-8B项目采用Unsloth技术优化大语言模型微调过程。该技术可将Llama 3.1、Gemma 2和Mistral等模型的微调速度提升2-5倍,同时减少70%的内存占用。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b和Mistral 7b等主流模型的快速微调。这些笔记本设计简单直观,初学者只需添加数据集并运行,即可获得性能显著提升的模型。
simple-llm-finetuner - 在NVIDIA GPU上使用LoRA方法轻松微调语言模型
GithubGradioLoRANVIDIA GPUPEFTSimple LLM Finetuner开源项目
Simple LLM Finetuner项目提供了初学者友好的界面,利用LoRA方法和PEFT库在常见的NVIDIA GPU上微调语言模型。用户可以轻松管理数据集、定制参数,并评估模型推理能力。支持在UI中粘贴数据集,提供参数调整和详细说明。尽管项目已停止维护,建议使用替代工具如LLaMA-Factory、unsloth或text-generation-webui。
PiSSA - 高效微调大语言模型的创新方法
GithubPiSSA低秩适应参数高效微调大语言模型奇异值分解开源项目
PiSSA是一种创新的参数高效微调方法,通过优化关键奇异值和向量来增强大语言模型性能。相较于LoRA,PiSSA展现出更快的收敛速度和更优的效果。在多个基准测试中,PiSSA的表现全面超越LoRA。这种方法不仅保留了LoRA的参数效率和量化兼容性优势,还大幅降低了4位量化误差。PiSSA初始化迅速,易于从LoRA转换。在多种模型和任务中,PiSSA均表现出色,为大语言模型的高效微调提供了新的可能性。
tiny_GPT2ForTokenClassification-lora - 使用PEFT框架实现GPT2模型的LoRA微调
AI模型GithubHuggingfacePEFT开源项目机器学习框架模型训练
该项目基于PEFT框架,通过LoRA适配器对tiny_GPT2ForTokenClassification模型进行微调,实现低资源消耗的模型定制化训练。项目展示了PEFT框架在轻量级模型调优中的应用方法
Llama-3.2-3B-GGUF - 高性能多语言型大语言模型支持8种语言
GithubHuggingfaceLlama 3.2人工智能多语言开源项目机器学习模型语言模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,适用于对话和代理任务。本项目使用llama.cpp对原模型进行量化,保留了128k上下文长度和分组查询注意力等特性。该模型在行业基准测试中表现优异,可用于聊天、知识检索、摘要等自然语言生成任务,适合商业和研究使用。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
Llama-3.1-Nemotron-70B-Instruct-bnb-4bit - 基于Unsloth技术的大语言模型高性能微调框架
GithubHuggingfaceLlama 3.1NVIDIA代码优化开源项目模型模型微调深度学习
Unsloth优化的Llama 3.1 Nemotron 70B指令模型,在保持模型性能的同时实现内存占用降低70%、训练速度提升2-5倍的优化效果。该框架支持Llama 3.2、Mistral、Phi-3.5等主流大语言模型的微调,提供适配Google Colab的入门级notebooks,支持GGUF、vLLM等多种导出格式。
Chinese-Vicuna - 中文LLaMA模型的低资源指令微调方案
AI模型Chinese-VicunaGithubLLaMALoRA开源项目自然语言处理
Chinese-Vicuna项目旨在低资源环境下训练中文LLaMA模型。该方案可在单个RTX-2080TI上进行指令微调,在RTX-3090上实现长上下文多轮对话。具有参数效率高、显卡友好和易部署等特点,支持7B和13B模型微调及垂直领域应用。项目提供完整的训练、推理和部署代码,以及多种优化工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号