Project Icon

u-net

使用Keras库构建深度神经网络的教程

本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。

introtodeeplearning - MIT开源深度学习课程,掌握云端实验技能
GPUGithubJupyter notebookMIT Introduction to Deep LearningPython开源项目谷歌Colaboratory
MIT的深度学习课程提供完整的代码和实验指导,帮助学习者自主完成实验。课程内容包括讲座视频、幻灯片及云端运行的Jupyter笔记本。实验在Google Colaboratory中运行,无需下载。课程使用mitdeeplearning Python包,简化编程过程。详细的实验提交说明和竞赛指南确保学习者掌握深度学习技能。
PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
keras-non-local-nets - Keras非局部神经网络实现,多模式支持与计算优化
GithubKeras开源项目张量运算深度学习计算机视觉非局部神经网络
keras-non-local-nets项目提供了Keras实现的非局部神经网络块。支持Gaussian、Embedded Gaussian和Dot等多种实例化方式,并通过可变屏蔽计算模式优化性能。项目包含使用模板和示例代码,便于集成到现有神经网络中。同时支持函数式API和Sequential API,适应不同的网络构建需求。
awesome-transformers-in-medical-imaging - Transformer在医学影像分析中的最新应用进展
GithubTransformer分割医学图像分析开源项目深度学习计算机视觉
本项目汇总了Transformer在医学影像分析领域的最新研究成果,包括图像分割、分类、重建等多个任务。资源库按时间顺序整理相关论文和开源实现,为研究人员提供全面参考。内容定期更新,旨在促进Transformer在医学影像分析中的应用与发展。
ktrain - 轻量级的深度学习和AI工具包
GithubTensorFlow Kerasktrain开源项目机器学习深度学习预训练模型
ktrain 是一个基于 TensorFlow Keras 的轻量级深度学习库封装,帮助用户快速构建、训练和部署各种机器学习模型。适用于文本、视觉、图表和表格数据,支持文本分类、图像识别、节点分类和因果推断等任务。无论是初学者还是有经验的研究人员,都能借助其简单的 API 和多种学习率策略,快速实现高效模型部署,支持导出到 ONNX 和 TensorFlow Lite。
deep-learning-drizzle - 深度学习与AI在线课程
Github开源项目机器学习深度学习神经网络自然语言处理计算机视觉
deep-learning-drizzle 集结了全球顶尖院校与研究机构的深度学习与AI在线课程。覆盖初级到高级课程,涉及自然语言处理、计算机视觉、机器学习等多个领域,提供视频教程及实战操作指南。适合各层次人士学习,助您深入AI领域。
Diffusion_models_from_scratch - 完整实现扩散模型的开源框架与教程
Diffusion模型GithubImageNetU-Net图像生成开源项目预训练模型
该项目提供了一个完整的扩散模型实现框架,包含DDPM、DDIM和无分类器引导模型。项目特点包括:基于ImageNet 64x64数据集的预训练模型、详细的环境配置和数据准备指南、全面的训练和推理脚本,以及多种模型架构和优化策略。开发者可以利用此框架轻松训练自定义扩散模型或使用预训练模型生成图像。
coursera-deep-learning-specialization - Coursera深度学习课程,涵盖神经网络、卷积网络和序列模型
Andrew NgConvolutional Neural NetworksCourseraDeep Learning SpecializationGithubTensorFlow开源项目
《深度学习》由Andrew Ng教授主讲,包括神经网络、序列模型等方面的编程作业和测验。学员将学到TensorFlow 2、Keras等最新技术,课程内容2021年更新,涵盖前沿发展,适合系统学习深度学习的学员。
MedSegDiff - 创新医学图像分割框架
GithubMedSegDiff人工智能医学图像分割开源项目扩散模型深度学习
MedSegDiff是一个创新的医学图像分割框架,基于扩散概率模型(DPM)。该方法通过添加高斯噪声并学习逆向去噪过程来实现分割。利用原始图像作为条件,MedSegDiff从随机噪声生成多个分割图,并进行集成获得最终结果。这种方法能够捕捉医学图像中的不确定性,在多个基准测试中表现优异。MedSegDiff支持多种医学图像分割任务,包括皮肤黑色素瘤和脑肿瘤分割等,并提供详细使用说明和示例。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号