Project Icon

u-net

使用Keras库构建深度神经网络的教程

本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。

U-2-Net - 深度嵌套U结构助力显著对象精准检测
GithubU2-Net人像分割图像背景移除开源项目模型训练视觉应用
U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。
keras_cv_attention_models - 深度学习模型和使用指南
GithubKeras_cv_attention_modelsPyTorchTensorFlow开源项目模型训练
该项目提供全面的深度学习模型和使用指南,支持Keras和PyTorch后端。涵盖基础操作、模型训练、推理优化等功能,并详细介绍识别、检测、分割和语言模型的使用。还支持ONNX导出和推理性能评估。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
t81_558_deep_learning - 深度神经网络的应用
Deep LearningGithubJeff HeatonKerasTensorFlowWashington University开源项目
本课程结合先进训练技术和神经网络架构,使学生能够处理表格数据、图像、文本和音频。内容涵盖经典神经网络、卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、生成对抗网络(GAN)和强化学习,应用于计算机视觉、时间序列、安全性、自然语言处理(NLP)和数据生成等领域。通过使用Python实现TensorFlow和Keras,课程特别侧重深度学习的实际应用。无需预先了解Python,但需具备基本编程知识。
tutorials - 涵盖2D和3D分类、分割、回归及配准任务实例MONAI教程
2D分割3D分割GithubJupyter NotebookMONAIPyTorch开源项目
本资源库包含详尽的MONAI教程,涵盖2D和3D分类、分割、回归及配准任务实例。教程演示如何使用Matplotlib和Jupyter Notebook在PyTorch和MONAI中进行医学图像处理和深度学习操作,并提供Colab环境下的GPU加速指南及数据处理和问题解决方法。教程还介绍了模型部署、实验管理、联邦学习和数字病理学实例,帮助用户掌握和应用MONAI功能。
intro-to-deep-learning - 全面实用的深度学习入门课程
GithubJupyter NotebookPython开源项目机器学习深度学习神经网络
这是一个面向深度学习初学者的开源项目,提供全面的入门课程。课程内容包括神经网络基础知识的介绍材料、实践演练和扩展资源。采用Jupyter Notebook形式,鼓励学生动手实践以加深理解。课程涵盖深度学习核心概念,为学习者打下扎实基础,为进一步探索高级主题如GAN和NLP做好准备。项目注重理论与实践结合,并提供深入学习资源。项目内容结构清晰,按主题分类组织,每个主题包含概述、预习建议、实践演示和深入学习资源。课程支持本地运行和Google Colab使用两种方式,增加了学习的灵活性。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
Blog - 全面涵盖深度学习与机器学习的教程项目
GithubPython人工智能开源项目机器学习深度学习算法
本项目汇集了深度学习和机器学习领域的系列教程与代码实现。内容覆盖从基础到高级的多个主题,包括神经网络、CNN、RNN、NLP等深度学习技术,以及特征工程、模型评估、异常检测等机器学习方法。每个主题均配有详细解析和Python代码,为AI学习和实践提供了丰富资源。
mit-deep-learning - MIT深度学习课程教程集合
GithubMIT Deep Learning卷积神经网络开源项目深度学习教程深度强化学习生成对抗网络
本项目汇集了MIT深度学习课程的全面教程,涵盖基础知识、场景分割和生成对抗网络(GANs)等主题,适合初学者和进阶用户。项目包括前沿模型如DeepLab和BigGAN,并提供Jupyter Notebook和Google Colab示例,帮助学习者掌握核心技术。另有深度强化学习竞赛DeepTraffic,挑战开发者在复杂交通环境中训练神经网络实现高速驾驶。
deformableLKA - 变形大核注意力机制提升医学图像分割效果
3D分割D-LKA NetDeformable Large Kernel AttentionGithubVision Transformer医学图像分割开源项目
变形大核注意力(D-LKA Attention)是一种新型医学图像分割方法。它通过大型卷积核高效处理图像数据,并使用可变形卷积适应不同数据模式。该方法有2D和3D两个版本,尤其是3D版本在处理跨层数据时表现优异。基于此技术开发的D-LKA Net架构在多个医学分割数据集上的表现超过了现有方法,展现了其在医学图像分析领域的潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号