Project Icon

SlowFast

开源视频理解框架 提供多种先进模型架构

PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。

fastmlx - FastMLX为MLX模型提供高性能托管API 支持视觉和语言模型
APIFastMLXGithubMLX模型图像处理开源项目机器学习
FastMLX是一个高性能API,用于托管MLX模型,包括视觉语言模型和语言模型。它提供OpenAI兼容接口,支持动态模型加载、多种模型类型和图像处理。FastMLX具有高效的资源管理能力,易于集成和扩展。通过多工作进程并行处理,提高了系统吞吐量和响应速度。此外,FastMLX支持函数调用功能,进一步增强了其多功能性。
big_vision - 基于Jax/Flax的大规模视觉模型训练框架
GithubJaxbig vision开源项目模型训练深度学习计算机视觉
Big Vision是一个用于训练大规模视觉模型的开源代码库。它基于Jax/Flax构建,支持在Cloud TPU VM和GPU上运行。该项目采用tf.data和TensorFlow Datasets实现高效的数据处理,可无缝扩展至2048个TPU核心的分布式环境。Big Vision涵盖了视觉Transformer、多模态学习、知识蒸馏等多个研究方向,为大规模视觉实验提供了可靠的基础。
MixFormerV2 - 高效全Transformer跟踪模型 实现CPU实时运行
GithubMixFormerV2Transformer开源项目模型蒸馏目标跟踪神经网络
MixFormerV2是一个统一的全Transformer跟踪模型,无需密集卷积操作和复杂评分预测模块。该模型提出四个关键预测token,有效捕捉目标模板与搜索区域的相关性。项目还引入新型蒸馏模型压缩方法,包括密集到稀疏和深层到浅层两个阶段。MixFormerV2在LaSOT和TNL2k等多个基准测试中表现优异,分别达到70.6%和57.4%的AUC,同时在GPU上保持165fps的推理速度。值得注意的是,MixFormerV2-S是首个在CPU上实现实时运行的基于Transformer的单流跟踪器。
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
Awesome_Long_Form_Video_Understanding - 长视频理解研究前沿进展与资源综述
Github人工智能开源项目深度学习视频分析计算机视觉长视频理解
这是一个综合性长视频理解研究资源库,涵盖表征学习、高效建模、大语言模型等多个子领域。项目汇总了前沿研究论文、数据集和工具,对各子任务进行了系统梳理。为长视频理解研究者提供了全面的参考资源,有助于推动该领域的发展。
pytorch-frame - 模块化深度学习框架用于异构表格数据
GithubPyTorch Frame开源项目模块化框架深度学习神经网络表格数据
PyTorch Frame是一个为异构表格数据设计的深度学习框架,支持数值、分类、时间、文本和图像等多种列类型。它采用模块化架构,实现了先进的深度表格模型,并可与大型语言模型集成。该框架提供了便捷的mini-batch加载器、基准数据集和自定义数据接口,简化了表格数据的深度学习研究过程,适用于各层次研究人员。框架内置多个预实现的深度表格模型,如Trompt、FTTransformer和TabNet等,并提供与XGBoost等GBDT模型的性能对比基准。PyTorch Frame无缝集成于PyTorch生态系统,便于与其他PyTorch库协同使用,为端到端的深度学习研究提供了便利。
videomae-large - 视频自监督学习的高效模型
GithubHuggingfaceVideoMAE开源项目模型自监督视频分类视频预训练
VideoMAE大型模型在Kinetics-400数据集上进行自监督预训练,采用掩码自编码器方法,有效学习视频的内在表示。利用视觉Transformer架构,通过将视频划分为固定大小的图像块,结合线性嵌入和位置编码,进行深度分析和像素预测,适用于多种后续任务和特征提取,包括视频分类和处理。
fastdup - 无监督的高效图像和视频数据集分析工具
Githubfastdup可视化图片分析开源项目无监督工具视频数据集
fastdup是一款无监督的图像与视频数据集分析工具,能够检测重复、异常和低质量图像。其优化的C++引擎在低资源CPU机器上也能高效运行,处理数百万到数十亿张图像。支持主要操作系统,数据可以本地或云端处理,确保隐私。提供交互式UI和静态图库,便于用户探索分析结果。
timesformer-base-finetuned-k600 - 采用空间时间注意力的视频分类技术,提升视频理解能力
GithubHuggingfaceKinetics-600TimeSformer开源项目模型深度学习空间时间注意力视频分类
TimeSformer模型运用空间时间注意力机制进行视频分类,能够识别Kinetics-600中的600种标签。该工具旨在提升视频理解的准确性,提供简便的视觉分析能力。
fast.ai - 简化深度学习的开源教育平台
AI工具fast.ai人工智能数据科学机器学习深度学习
fast.ai提供免费在线课程和开源软件库,通过代码优先的实践教学,帮助各类人群快速掌握深度学习技术。该平台注重应用,让学习者能快速构建模型,同时致力于提高AI领域的多样性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号