Project Icon

jepa

先进的自监督视频表征学习方法

V-JEPA是一种创新的视频联合嵌入预测架构,专为自监督学习而设计。该方法仅通过观察VideoMix2M数据集的视频像素进行训练,不依赖预训练图像编码器、文本信息、负样本、人工标注或像素级重建。V-JEPA生成的视觉表征具有多功能性,能够在各种下游视频和图像任务中实现优异性能,无需对模型参数进行微调。其特征预测展现出良好的时空一致性,并可通过条件扩散模型转化为可解释的像素表示。

PIA - 个性化图像动画的创新解决方案
GithubPIA动态图像图像动画开源项目文本-图像对齐高动作可控性
PIA是一种个性化图像动画方法,使用插件式模块在文本到图像模型中生成高运动可控性和强文本图像对齐的视频。它支持1024x1024图像,并且在16GB GPU内存下高效运行,兼容Colab和HuggingFace平台。PIA提供多种动画风格和控制参数,如运动幅度和循环动画。通过简便的环境设置和预训练模型下载,用户可以高效地进行图像动画制作。
clip4clip-webvid150k - 改进视频检索精度的解决方案
CLIP4ClipGithubHugging FaceHuggingfaceWebVid开源项目模型模型评估视频检索
CLIP4Clip结合CLIP模型和WebVid数据集,成功在视频文本检索中提高精度,利用150,000个视频文本对的训练提升性能。此模型擅长处理大规模视频数据,具备视觉-时间概念学习能力,适合高效视频搜索应用。其架构支持文本到视频的快速检索,提升搜索效率。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
videocomposer - 灵活可控的视频合成与运动模式生成工具
AI生成GithubVideoComposer动作控制开源项目扩散模型视频合成
VideoComposer是一个开源的视频合成模型,能够同时控制生成视频的空间和时间特征。它支持文本、草图、参考视频等多种输入形式,为用户提供灵活的创作方式。项目包含预训练模型和用户界面,便于研究人员和开发者进行视频合成实验。
XMem2 - 少量标注实现高精度视频分割的开源工具
GithubXMem++交互式标注人工智能开源项目视频分割计算机视觉
XMem2是一个开源的交互式视频分割工具,通过永久记忆模块和创新帧选择算法,只需少量标注即可实现高质量分割。它能以30+ FPS的速度处理物体部件、流体、可变形物体等复杂场景。XMem2提供改进的GUI和Python接口,适用于电影制作等领域。项目还包含PUMaVOS数据集,涵盖23个具挑战性的视频分割场景。
stable-video-diffusion-img2vid-xt-1-1 - 从图像生成视频的扩散模型的稳定性
GithubHuggingfaceStable Video Diffusion开源项目模型研究用途规定条件视频生成非商业用途
Stable Video Diffusion 1.1 是一款专为研究用途而设计的图像到视频生成模型,通过优化固定条件和运动配置,实现了更一致的视频输出。该模型可以从单张图像生成25帧、分辨率为1024x576的视频片段,但不适用于精确表现真实人物或事件,且不能通过文本进行控制。在探讨生成模型的局限性和偏见时,该模型表现出色。欲了解更多信息,请访问 Stability AI 的 GitHub 仓库。
LVM - 大规模视觉模型的创新顺序建模方法
GithubLVM大规模视觉模型序列建模开源项目视觉句子视觉预训练模型
LVM是一种创新视觉预训练模型,将多种视觉数据转化为视觉句子,并进行自回归式标记预测。该模型采用顺序建模方法,无需语言数据即可学习大规模视觉模型。通过设计视觉提示,LVM可解决多种视觉任务。兼容GPU和TPU,为大规模视觉模型学习提供新方法。
MMVP - 探索多模态大语言模型的视觉局限
GithubInterleaved-MoFMMVP基准测试多模态LLM开源项目视觉模式视觉能力
MMVP基准测试揭示了多模态大语言模型在视觉理解方面的局限。即使是顶尖模型也难以准确完成基本视觉定位任务。项目开发的Interleaved-MoF模型旨在改善这些问题。MMVP还提供了开放的评估工具和数据集,为多模态AI技术的发展做出了贡献。
StreamingT2V - 先进的长视频生成技术 实现连贯动态和可扩展内容
GithubStreamingT2V一致性动态视频开源项目文本到视频长视频生成
StreamingT2V是一种创新的自回归技术,专门用于生成长时间、连贯一致的视频内容。该技术无需分段处理即可创建动态丰富的视频,确保了时间上的连贯性,同时保持与文本描述的高度契合和单帧图像的优质表现。目前已实现生成1200帧(约2分钟)的视频,并具有进一步延长的潜力。值得注意的是,StreamingT2V的性能不局限于特定的文本到视频模型,这意味着随着基础模型的进步,视频质量有望进一步提升。
PortraitGen-code - 肖像视频编辑技术,结合多模态生成模型
3D重建GithubPortraitGen多模态生成开源项目视频编辑风格迁移
这个项目实现了一种创新的肖像视频编辑方法,采用多模态生成模型来实现统一且高表达力的风格转换,能够处理单目RGB视频中的文本和图像驱动的高质量编辑以及光照调整,从而提高面部结构呈现的质量。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号