Project Icon

clip-rsicd-v2

专为遥感图像优化的零样本分类和检索模型

clip-rsicd-v2是一个基于CLIP的微调模型,专注于提升遥感图像的零样本分类和检索能力。该模型采用ViT-B/32架构和掩码自注意力Transformer分别作为图像和文本编码器。通过在RSICD、UCM和Sydney等遥感数据集上训练,clip-rsicd-v2在多项检索任务中显著超越原始CLIP模型。研究人员可利用此模型深入探究计算机视觉模型的鲁棒性和泛化能力。

Clip Interrogator AI - 多模态图像分析和描述生成系统
AI图像分析AI工具CLIP Interrogator图像描述生成机器学习自然语言处理
Clip Interrogator AI是一个集成BLIP和CLIP模型的图像分析系统。它能自动解析图像内容,生成详细的文本描述和标签。通过基础说明和'Flavors'系统,Clip Interrogator AI提供全面的图像解释。这一工具适用于需要深入理解或复制图像风格的场景,为AI图像生成提供精确提示。作为web应用,Clip Interrogator AI简化了复杂的图像分析过程。
clip-as-service - 一种低延迟、高可扩展性的用于嵌入图像和文本的服务
CLIP-as-serviceGithub图像嵌入多模态解决方案开源项目文本嵌入神经搜索
CLIP-as-service是一款以神经网络为基础,专注于提供高效且易于扩展的图像和文本嵌入服务。其面向大规模数据处理,支持多种并发请求,适合集成到各种神经网络搜索框架中。这个服务通过简洁的API和自动负载均衡,让用户无需深厚技术背景即可便捷使用。同时,该服务能与Jina和DocArray等神经搜索生态系统紧密结合,助力开发者快速部署多模态和跨模态应用。
RADIO - 通过多模型融合提升性能的通用视觉基础模型
CLIPDINOv2GithubRADIOSAM开源项目视觉基础模型
AM-RADIO是一个将多个大型视觉基础模型蒸馏为单一模型的框架。其核心产物RADIO作为新一代视觉基础模型,在多个视觉任务中表现优异,可作为通用视觉骨干网络使用。RADIO通过蒸馏整合了CLIP、DINOv2和SAM等模型,保留了文本定位和分割对应等特性。在ImageNet零样本分类、kNN和线性探测分割等任务上,RADIO超越了教师模型,同时提升了视觉语言模型的性能。此外,RADIO支持任意分辨率和非方形图像输入,并提供了名为E-RADIO的高效变体。
clip-interrogator - 一种提示工程工具
CLIP InterrogatorGithubOpenAIStable Diffusion人工智能图像生成开源项目
CLIP Interrogator结合了OpenAI的CLIP和Salesforce的BLIP,优化生成与给定图像相匹配的文本提示。支持Stable Diffusion和DreamStudio等文本到图像模型。现已作为Stable Diffusion Web UI扩展供使用,并支持在Colab、HuggingFace和Replicate上运行。用户可通过Python虚拟环境安装,并根据系统VRAM配置自定义优化。提供多种预训练CLIP模型供选择,满足不同需求。
clifs - 自然语言视频帧内容搜索系统
CLIFSGithubOpenAI's CLIPdjango图像编码器开源项目视频内容搜索
CLIFS利用OpenAI的CLIP模型,通过自然语言在视频中搜索匹配的帧内容。项目通过提取视频帧特征并与文本查询特征进行相似性匹配,返回结果。Django构建的搜索引擎界面支持自定义视频文件的索引和搜索。
HighResCanopyHeight - AI驱动的高分辨率森林冠层高度制图技术
DINOv2GithubMeta AI卫星图像开源项目树冠高度图自监督学习
HighResCanopyHeight项目运用自监督视觉转换器和卷积解码器,将RGB卫星影像转化为高分辨率森林冠层高度图。通过大规模预训练和针对性微调,该技术展现出跨地理区域和影像类型的适应性。这一创新方法在精确度和细节呈现上超越传统技术,为森林监测和生态研究提供了有力支持。
Awesome-Remote-Sensing-Multimodal-Large-Language-Model - 远程遥感多模态大语言模型资源全面汇总
Github人工智能多模态大语言模型开源项目视觉语言遥感
本项目是远程遥感多模态大语言模型(RS-MLLMs)领域的首个综述,全面汇总了最新模型架构、训练流程、数据集和评估基准等资源。内容涵盖视觉-语言预训练模型、智能代理等多个方面,持续追踪RS-MLLMs的最新进展。项目不断更新,旨在为研究人员提供全面的RS-MLLMs资源库,促进该领域的发展。
diffusion-classifier - 利用大规模文本到图像生成模型实现零样本分类
Diffusion ClassifierGithubICCV 2023Stable Diffusionzero-shot分类开源项目生成模型
本项目展示了如何利用大型文本图像生成模型如Stable Diffusion进行零样本分类,无需额外训练。该生成分类方法在多项基准测试中表现优越,超过其他扩散模型的知识提取方法。通过从ImageNet的类条件扩散模型中提取标准分类器,该模型即使在仅使用弱增强的情况下也表现出强大的分类性能和分布转移的稳健性。本研究推进了生成模型在下游任务中的应用,是对多模态组合推理能力的重要探索。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号