Project Icon

clip-rsicd-v2

专为遥感图像优化的零样本分类和检索模型

clip-rsicd-v2是一个基于CLIP的微调模型,专注于提升遥感图像的零样本分类和检索能力。该模型采用ViT-B/32架构和掩码自注意力Transformer分别作为图像和文本编码器。通过在RSICD、UCM和Sydney等遥感数据集上训练,clip-rsicd-v2在多项检索任务中显著超越原始CLIP模型。研究人员可利用此模型深入探究计算机视觉模型的鲁棒性和泛化能力。

CLIP-ViT-g-14-laion2B-s12B-b42K - 用于零样本图像分类的先进研究工具
CLIP ViT-g/14GithubHuggingfaceLAION-5B图像分类多模态模型开源项目模型零样本学习
该模型专为研究社区而设计,采用LAION-5B数据集中的英语子集进行训练。它帮助研究人员探索零样本与任意图像分类的可能性,适用于跨学科的研究。该模型仅推荐用于研究目的,不适合用于商业化或未经测试的环境,并强调确保其安全和适当使用。
clip-vit-base-patch32 - OpenAI CLIP模型实现零样本图像分类的视觉语言预训练
CLIPGithubHuggingfaceOpenAI图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言预训练模型,使用ViT-B/32和Transformer架构分别作为图像和文本编码器。通过对比学习训练,CLIP能实现零样本图像分类等任务,在多项计算机视觉基准测试中表现优异。尽管在细粒度分类和物体计数方面存在局限,CLIP为研究人员提供了探索模型鲁棒性和泛化能力的重要工具。
CLIP-ViT-bigG-14-laion2B-39B-b160k - CLIP-ViT-bigG-14模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-2BViT-bigG/14开源模型开源项目模型零样本图像分类
CLIP-ViT-bigG-14-laion2B-39B-b160k是基于LAION-2B数据集训练的大规模视觉语言模型。该模型在零样本图像分类、图像文本检索等任务中表现出色,在ImageNet-1k测试中实现80.1%的零样本top-1准确率。模型采用ViT-bigG/14架构,由stability.ai提供计算资源支持。虽然适合研究人员探索零样本分类和跨模态学习,但目前不建议直接应用于商业场景。
CLIP-ViT-H-14-laion2B-s32B-b79K - 基于LAION-2B数据集的多功能视觉-语言模型
CLIPGithubHuggingfacezero-shot图像分类开源项目数据集机器学习模型
CLIP-ViT-H-14-laion2B-s32B-b79K是基于LAION-2B数据集训练的视觉-语言模型。该模型在ImageNet-1k上达到78.0%的零样本Top-1准确率,适用于图像分类、图像文本检索等任务。此外,它还支持图像分类微调、线性探测和图像生成指导等下游应用。研究人员可借助该模型探索零样本图像分类技术,并评估其潜在影响。
CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k - 具备零样本学习与多语言支持的图像模型
CLIP ViT-B/32GithubHuggingfaceLAION-5B图像分类多语言性能开源项目模型零样本学习
该模型基于LAION-5B数据集和OpenCLIP技术,能够进行零样本图像分类和图像-文本检索。通过结合CLIP ViT-B/32和xlm roberta,这一模型在各种图像任务中显示出较高性能。同时,其多语言能力经验证,可提升imagenet1k等多语言数据集上的表现,尤其在意大利语和日语测试中效果显著。依托于高效的OpenCLIP训练,模型在mscooco和flickr30k数据集上有较大性能提升,是图像生成与分类的可靠选择。
StreetCLIP - 开域图像地理定位的高性能零样本学习模型
GithubHuggingfaceOpenAIStreetCLIP图像地理定位城市场景开源项目模型零样本学习
StreetCLIP是一个在开域图像地理定位中实现零样本学习的预训练模型,基于OpenAI的CLIP ViT,通过1.1百万街景图像进行训练,与传统监督模型相比具有更优性能,适用于城市和乡村环境。该模型能够将图像特征与特定地理位置关联,可应用于建筑分析、自然环境监测、基础设施检查等多种领域,并有助于导航和自动驾驶技术的改进。
CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup - ConvNeXt-Large CLIP模型提升零样本图像分类性能
CLIPConvNeXtGithubHuggingface图像分类开源项目机器学习模型零样本学习
本模型基于LAION-2B数据集训练,采用320x320分辨率的ConvNeXt-Large架构和权重平均技术。在ImageNet-1k零样本分类任务上,准确率达到76.9%,超越了256x256分辨率版本。模型效率高于OpenAI的L/14-336,可应用于零样本图像分类、图文检索等任务。该项目为研究人员提供了强大的视觉-语言表征工具,助力探索大规模多模态模型。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup - CLIP ConvNeXt-XXLarge模型在零样本图像分类上的卓越性能
CLIPConvNeXtGithubHuggingface开源项目模型深度学习计算机视觉零样本图像分类
CLIP ConvNeXt-XXLarge是基于LAION-2B数据集训练的大规模视觉-语言模型。它在ImageNet零样本分类任务中实现79.4%的准确率,成为首个非ViT架构突破79%的CLIP模型。该模型结合847M参数的ConvNeXt-XXLarge图像塔和ViT-H-14规模的文本塔,在计算效率和性能间达到平衡,为视觉-语言模型研究开辟新方向。
clip-ViT-B-32-vision - 图像分类与相似性搜索的简便工具
FastEmbedGithubHuggingfaceONNXimage-classification开源项目模型模型推理视觉相似搜索
clip-ViT-B-32模型的ONNX版本,支持图像分类和相似性搜索。利用FastEmbed库,用户能够快速处理图像嵌入,该模型在视觉任务中表现出色,适用于多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号