Project Icon

clip-rsicd-v2

专为遥感图像优化的零样本分类和检索模型

clip-rsicd-v2是一个基于CLIP的微调模型,专注于提升遥感图像的零样本分类和检索能力。该模型采用ViT-B/32架构和掩码自注意力Transformer分别作为图像和文本编码器。通过在RSICD、UCM和Sydney等遥感数据集上训练,clip-rsicd-v2在多项检索任务中显著超越原始CLIP模型。研究人员可利用此模型深入探究计算机视觉模型的鲁棒性和泛化能力。

Long-CLIP - CLIP模型长文本处理能力升级 显著提升图像检索效果
AI模型CLIPGithubLong-CLIP开源项目文本-图像检索零样本分类
Long-CLIP项目将CLIP模型的最大输入长度从77扩展到248,大幅提升了长文本图像检索性能。在长标题文本-图像检索任务中,R@5指标提高20%;传统文本-图像检索提升6%。这一改进可直接应用于需要长文本处理能力的各类任务,为图像检索和生成领域带来显著进展。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg - 基于LAION-2B数据集的卷积神经网络达到79%零样本分类准确率
CLIPConvNextGithubHuggingface图像分类开源项目机器学习模型神经网络
CLIP ConvNeXt-XXLarge是一个在LAION-2B数据集上训练的大规模视觉语言模型,总参数量12亿,图像分辨率256x256。模型采用ConvNeXt-XXLarge图像结构和ViT-H-14规模的文本编码器,在ImageNet零样本分类上达到79%准确率。主要应用于图像分类、检索等研究任务。
CLIP-ViT-L-14-DataComp.XL-s13B-b90K - 基于DataComp-1B数据集训练的零样本图像分类器
CLIPDataComp-1BGithubHuggingfaceOpenCLIP多模态模型开源项目模型零样本图像分类
CLIP ViT-L/14是一个基于DataComp-1B大规模数据集训练的多模态模型。在ImageNet-1k上达到79.2%的零样本分类准确率,可用于图像分类、检索等任务。该模型主要面向研究社区,旨在促进对零样本和任意图像分类的探索。由stability.ai提供计算资源支持,不建议直接用于部署或商业用途。
CLIP-convnext_base_w-laion2B-s13B-b82K - ConvNeXt CLIP模型在ImageNet零样本分类中达到70.8%以上准确率
CLIPConvNeXtGithubHuggingfaceLAION-5BOpenCLIP开源项目模型零样本图像分类
这是一系列基于LAION-5B数据集训练的CLIP ConvNeXt-Base模型。经过13B样本训练后,模型在ImageNet零样本分类中实现了70.8%以上的Top-1准确率,显示出比ViT-B/16更高的样本效率。模型使用timm的ConvNeXt-Base作为图像塔,并探索了增强图像增强和正则化的效果。作为首个在CLIP ViT-B/16和RN50x4规模下训练的ConvNeXt CLIP模型,它为零样本图像分类研究提供了新的选择。
DFN2B-CLIP-ViT-B-16 - 自动化数据过滤技术优化对比学习模型
CLIPGithubHuggingfaceOpenCLIPZero-Shot对比学习开源项目数据过滤模型
DFN2B-CLIP-ViT-B-16通过Data Filtering Networks从12.8B对未筛选的数据中选出优质样本,提升CLIP模型训练效果。该模型在ImageNet 1k、CIFAR-10等数据集上表现优异,平均精度为0.609232,支持OpenCLIP,增强了图像与文本匹配能力。特别适合需要提升零样本图像分类准确性的用户。
DFN5B-CLIP-ViT-H-14 - 高性能图像-文本对比学习模型
CLIPDFN-5BGithubHuggingface图像分类开源项目模型深度学习计算机视觉
DFN5B-CLIP-ViT-H-14是一个基于CLIP架构的图像-文本对比学习模型,通过DFN技术从430亿图像-文本对中筛选出50亿高质量样本进行训练。模型在39个图像分类基准测试中表现优异,平均准确率达69.8%。支持零样本图像分类和跨模态检索,可与OpenCLIP无缝集成。这一模型为计算机视觉和自然语言处理领域提供了有力支持,适用于多种研究和应用场景。
CLIP-ViT-B-32-256x256-DataComp-s34B-b86K - 基于DataComp训练的CLIP多模态视觉语言模型
CLIPDataComp-1BGithubHuggingfaceViT-B-32图像分类开源项目机器学习模型
CLIP ViT-B/32是一个在DataComp-1B数据集上训练的视觉语言模型,通过OpenCLIP框架实现。模型在ImageNet-1k分类任务中实现72.7%零样本准确率,支持图像分类、跨模态检索等研究任务。该开源项目为计算机视觉研究提供了重要的实验基础
metaclip-b32-400m - 揭秘CLIP数据处理方法的高性能视觉语言模型
GithubHuggingfaceMetaCLIP图像文本匹配开源项目模型自然语言处理计算机视觉零样本图像分类
MetaCLIP-b32-400m是基于CommonCrawl数据集训练的视觉语言模型,旨在解析CLIP的数据准备方法。该模型构建了图像和文本的共享嵌入空间,支持零样本图像分类和基于文本的图像检索等功能。研究人员可通过此模型探究CLIP的数据处理流程,加深对视觉语言模型训练过程的理解。
DFN2B-CLIP-ViT-L-14 - 基于CLIP架构的大规模数据集训练图像识别模型
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN2B-CLIP-ViT-L-14是一个基于CLIP架构的图像识别模型,采用数据过滤网络从128亿图像-文本对中筛选20亿高质量样本进行训练。该模型在多个基准测试中平均准确率达66.86%,可用于零样本图像分类等任务。模型提供OpenCLIP接口,便于开发者使用。DFN2B-CLIP-ViT-L-14体现了大规模数据集和先进算法在计算机视觉领域的应用,为图像理解提供有力支持。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号