Project Icon

clip-rsicd-v2

专为遥感图像优化的零样本分类和检索模型

clip-rsicd-v2是一个基于CLIP的微调模型,专注于提升遥感图像的零样本分类和检索能力。该模型采用ViT-B/32架构和掩码自注意力Transformer分别作为图像和文本编码器。通过在RSICD、UCM和Sydney等遥感数据集上训练,clip-rsicd-v2在多项检索任务中显著超越原始CLIP模型。研究人员可利用此模型深入探究计算机视觉模型的鲁棒性和泛化能力。

ViT-B-16-SigLIP-512 - SigLIP驱动的视觉语言预训练模型用于零样本图像分类
GithubHuggingfaceSigLIPViTzero-shot图像分类对比学习开源项目模型
ViT-B-16-SigLIP-512模型利用SigLIP (Sigmoid loss for Language-Image Pre-training)技术,在WebLI数据集上进行训练。作为一个视觉语言预训练模型,它主要用于零样本图像分类任务。该模型兼容OpenCLIP和timm库,可生成高质量的图像和文本嵌入,为图像分类、检索等计算机视觉和跨模态应用提供基础。
satclip - 全球通用地理位置编码器
GithubSatCLIP卫星图像地理位置编码开源项目机器学习深度学习
SatCLIP是一个基于卫星图像的地理位置编码器,通过对比学习将图像与位置匹配。该项目使用球谐函数进行位置编码,支持多种视觉编码器,适用于空间分析和图像定位等任务。SatCLIP提供预训练模型、示例代码和S2-100K数据集,便于研究人员开展地理空间分析和机器学习应用,为全球尺度的地理信息处理开辟新途径。
ViT-SO400M-14-SigLIP-384 - 采用SigLIP技术的大规模视觉-语言预训练模型
GithubHuggingfaceSigLIPViT-SO400M-14WebLI图像文本对比开源项目模型零样本图像分类
ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。
chinese-clip-vit-huge-patch14 - 基于ViT-H/14和RoBERTa的中文图文对比学习模型
Chinese-CLIPGithubHuggingface中文数据集图像编码器开源项目文本编码器检索模型
chinese-clip-vit-huge-patch14是一个基于ViT-H/14和RoBERTa-wwm-large的中文CLIP模型,在大规模中文图文数据上训练,表现卓越。支持在MUGE、Flickr30K-CN和COCO-CN等数据集中的图文检索和零样本分类。提供API实现简便的图文特征提取及相似度计算,详情请参见GitHub仓库。
metaclip-h14-fullcc2.5b - 大规模视觉语言模型基于25亿CommonCrawl数据训练
GithubHuggingfaceMetaCLIP多模态学习开源项目模型自然语言处理计算机视觉零样本分类
MetaCLIP是一个基于25亿CommonCrawl数据点训练的大规模视觉语言模型。该模型由Xu等人在《Demystifying CLIP Data》论文中提出,旨在解析CLIP的数据准备流程。MetaCLIP支持图像与文本的联合嵌入,可应用于零样本图像分类、文本图像检索等任务。作为一个开源项目,MetaCLIP为研究人员提供了探索大规模视觉语言模型的新方向,有助于推进计算机视觉和自然语言处理领域的发展。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
ViT-B-16-SigLIP-256 - WebLI数据集训练的SigLIP图像-文本对比学习模型
GithubHuggingfaceSigLIPWebLI图像分类图像文本对比开源项目模型模型使用
ViT-B-16-SigLIP-256是基于WebLI数据集训练的SigLIP模型,支持零样本图像分类。该模型兼容OpenCLIP和timm库,通过对比学习生成图像和文本特征表示。它能够计算图像与文本标签的相似度,适用于灵活的图像分类和检索应用。SigLIP采用Sigmoid损失函数进行语言-图像预训练,提高了模型性能。
clip4clip-webvid150k - 改进视频检索精度的解决方案
CLIP4ClipGithubHugging FaceHuggingfaceWebVid开源项目模型模型评估视频检索
CLIP4Clip结合CLIP模型和WebVid数据集,成功在视频文本检索中提高精度,利用150,000个视频文本对的训练提升性能。此模型擅长处理大规模视频数据,具备视觉-时间概念学习能力,适合高效视频搜索应用。其架构支持文本到视频的快速检索,提升搜索效率。
rclip - AI驱动的命令行图像搜索工具
AI图像搜索CLIPGithubOpenAIrclip命令行工具开源项目
rclip是一款开源的命令行图像搜索工具,采用OpenAI的CLIP神经网络技术。该工具支持文本和图像查询,可进行相似图像搜索和多条件组合查询。rclip具有快速处理大量图片的能力,提供预览功能,并支持多种操作系统。这个创新工具为图像管理和搜索提供了新的解决方案,适合需要高效图像检索的专业人士和摄影爱好者。
vit_large_patch14_clip_336.openai_ft_in12k_in1k - ViT图像分类与特征提取模型
GithubHuggingfaceImageNet-1kVision TransformerWIT-400M图像分类开源项目模型预训练模型
OpenAI的ViT图像分类模型,利用CLIP在WIT-400M上预训练,并在ImageNet数据集上微调,适合多种视觉任务。其高性能参数为研究与开发提供强大支持,通过示例代码,可轻松实现图像分类与嵌入功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号