Project Icon

temporian

高效可靠的时间数据预处理库

Temporian是一个专注于时间序列分析和数据预处理的Python库。它支持多种时间数据类型,包括多变量时间序列、事件日志和跨源事件流。经过优化,Temporian在处理时间数据时的效率可达常规库的1000倍。此外,它还提供了防止数据泄露的功能,并能与现有机器学习生态系统无缝集成,为时间数据处理提供了高效可靠的解决方案。

MOMENT-1-large - 多功能时间序列分析基础模型:预测、分类、异常检测和填补
GithubHuggingfaceMOMENT基础模型开源项目时间序列分析机器学习模型预训练模型
MOMENT-1-large是一款专为时间序列分析设计的多功能基础模型。它能够高效处理预测、分类、异常检测和数据填补等多种任务。该模型具有出色的零样本和少样本学习能力,可以在缺少或仅有少量任务特定样本的情况下直接使用。此外,MOMENT-1-large支持使用领域相关数据进行微调,以进一步提升性能。作为一个灵活而强大的工具,它为各类时间序列分析任务提供了有力支持。
prophet - 开源时间序列预测库Prophet
FacebookGithubProphet开源软件开源项目时间序列预测机器学习
Prophet是Facebook开发的开源时间序列预测库。基于加法模型,它能处理非线性趋势、多重季节性和节假日效应。适用于具有强季节性且拥有较长历史数据的时间序列,对缺失数据和趋势变化有较强适应性。Prophet支持Python和R语言,API简洁易用,可快速生成高质量预测。
pmdarima - Python时间序列分析库 支持自动ARIMA建模和多种统计测试
GithubPythonpmdarima开源项目时间序列分析统计库自动ARIMA
pmdarima是一个Python统计库,旨在增强时间序列分析能力。它实现了类似R语言auto.arima的功能,提供多种统计测试、时间序列工具、转换器和特征提取器。该库支持季节性分解、交叉验证,并包含丰富的内置数据集。基于statsmodels构建,pmdarima采用类scikit-learn的接口设计,便于用户构建和部署时间序列模型。
BasicTS - 公平且标准的时间序列预测基准和工具包
BasicTSGithub基准测试工具包开源项目时间序列预测深度学习
BasicTS是一个开源的时间序列预测基准和工具包,支持空间-时间预测和长时间序列预测等任务。它提供统一标准的评估流程,实现对主流深度学习模型的公平对比。BasicTS还提供易用的接口,便于设计和评估新模型。该项目内置多个数据集和基线模型,支持多种计算设备,并有完善的日志系统。BasicTS致力于推动时间序列预测研究的发展。
neural_prophet - 易用的开源时间序列预测框架
GithubNeuralProphetPyTorch开源项目时间序列预测模型构建
NeuralProphet是一个基于PyTorch的开源框架,将神经网络与传统时间序列算法结合,专为时间序列预测而设计。它提供简便的代码接口,支持模型定制、趋势检测、季节性分析和事件影响评估,适合高频次和长期数据。项目仍在beta阶段,欢迎社区贡献。
TimeMoE-50M - 混合专家时间序列预测基础模型 提升大规模数据分析能力
GithubHuggingfaceTimeMoE基础模型开源项目时间序列预测模型深度学习混合专家模型
TimeMoE-50M是一个基于混合专家(MoE)架构的时间序列预测基础模型,专为处理十亿规模数据而设计。此模型旨在优化大规模时间序列分析的准确性和效率。开发者可在GitHub页面上找到详细的使用指南和实现方法,有助于将其整合到各类时间序列分析项目中,提升预测能力。
tods - 多变量时间序列的自动化异常检测系统
GithubTODS多变量数据开源项目异常检测时间序列自动机器学习
TODS是一个专注于多变量时间序列数据异常检测的全栈自动化机器学习系统。它提供数据处理、时间序列处理、特征分析等全面模块,支持点级、模式级和系统级三种检测场景。TODS的主要特点包括全栈机器学习功能、广泛的算法支持,以及能够自动搜索最佳模块组合构建最优管道的自动化机器学习能力。
Crossformer - 高效利用跨维度依赖的多变量时间序列预测模型
CrossformerGithubTransformer开源项目时间序列预测注意力机制深度学习
Crossformer是一种新型Transformer模型,针对多变量时间序列预测设计。该模型采用维度分段嵌入、两阶段注意力机制和层次编码器-解码器结构,有效捕捉时间和维度间的依赖关系。Crossformer在多个基准数据集上表现优异,为长序列预测和高维数据处理提供新思路。其开源实现便于研究人员和实践者探索应用。
tsfeatures - 高效提取时间序列特征的R工具包
GithubR包tsfeatures开源项目数据分析时间序列特征提取
tsfeatures是一个R包,专门用于从时间序列数据中提取多种特征。它能分析趋势、季节性、线性度等,并处理不同频率和周期的时间序列。该包输出易于理解的特征指标,适用于时间序列分析、预测和分类等领域。tsfeatures可通过CRAN安装,支持多种时间序列特征提取方法,使用简单灵活。
Time-series-classification-and-clustering-with-Reservoir-Computing - 基于储层计算的时间序列分析框架
GithubReservoir Computing开源项目时间序列分类时间序列聚类机器学习神经网络
这个开源项目利用储层计算技术,实现了时间序列数据的分类、聚类和预测功能。它支持处理单变量和多变量时间序列,并提供了易用的Python库。项目包含多个功能模块、丰富的数据集和高级示例。其特有的储层模型空间表示方法在处理复杂时间序列任务时表现出色。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号