Project Icon

Similari

Rust实现的高性能多目标跟踪框架

Similari是一个Rust实现的多目标跟踪框架,提供Python接口。它支持构建SORT、DeepSORT等复杂跟踪系统,内置卡尔曼滤波、非极大值抑制等算法。Similari适用于对象具有多个动态观测值的跟踪任务,可实现高效并行处理。与基于Python和NumPy的跟踪器相比,Similari通常具有更高的性能。

rust - Rust语言TensorFlow绑定,支持多平台和GPU加速
GithubRustTensorFlow安装开源项目文档绑定
TensorFlow Rust提供符合Rust语言习惯的TensorFlow绑定,支持便捷下载或编译TensorFlow共享库和GPU加速。该项目仍在活跃开发,API尚未完全稳定。用户可以通过在Cargo.toml中添加依赖项并运行cargo build来构建,详见文档和示例代码。
SmartSim - 为高性能计算环境优化的机器学习集成框架
GithubOrchestratorSmartRedisSmartSim开源项目机器学习高性能计算
SmartSim是为高性能计算(HPC)环境设计的工作流库,简化了PyTorch和TensorFlow等机器学习库在HPC模拟和应用中的使用。该框架能在HPC系统上启动机器学习基础设施,与用户工作负载并行运行。通过基础设施库和SmartRedis客户端,SmartSim实现了HPC应用与机器学习模型间的高效数据交换和远程执行,支持Fortran、C、C++和Python等多种语言,无需MPI即可实现运行时数据交换。
Segment-and-Track-Anything - 视频中任意对象的自动分割与追踪系统
AI视觉GithubSAM-Track交互式分割开源项目目标跟踪视频分割
Segment-and-Track-Anything是一个专注于视频中任意对象分割和追踪的开源项目。该系统集成了SAM模型的关键帧分割能力和DeAOT模型的多目标追踪功能。它支持自动检测新对象、交互式修改、文本提示等多种操作模式,适用于街景分析、增强现实、细胞追踪等领域。项目提供了直观的WebUI界面和灵活的参数设置,使用户能够轻松实现复杂的视频对象分割和追踪任务。
tch-rs - Rust语言的PyTorch C++ API接口
GithubPyTorchRustlibtorchnn::Moduletch-rs开源项目
tch-rs是Rust语言对PyTorch C++ API的绑定,通过简洁的封装实现高效的深度学习模型训练和推理。支持系统全局libtorch安装、手动安装和Python PyTorch安装,兼容CUDA并支持静态链接。提供详细的安装说明和丰富的示例代码,包括基础张量操作、梯度下降训练、神经网络构建和迁移学习等,适合不同水平的开发者。
SIMD-itertools - SIMD-itertools为Rust提供高效数组操作的SIMD加速迭代器
GithubRustSIMD并行计算开源项目性能优化迭代器
SIMD-itertools是一个Rust开源项目,提供SIMD加速的迭代器操作。通过替换标准库函数为SIMD版本,如contains()改为contains_simd(),可显著提升性能。支持u8至u64等多种数据类型,实现了find、filter、position等常用操作。项目需要Rust nightly版本,使用简单配置即可启用。根据项目提供的基准测试结果,SIMD-itertools在处理u32类型数据时,相比标准库实现可获得显著的性能提升。使用时需通过rustup安装nightly版本,并在编译时添加-C target-cpu=native参数以获得最佳性能。SIMD-itertools为开发者提供了高效的Rust数组处理工具,在多数情况下性能优于标准库实现。
Simd - 开源图像处理与机器学习库 支持多平台SIMD指令优化
GithubSIMD优化Simd Library图像处理开源项目机器学习跨平台
Simd是一个开源的图像处理和机器学习库,专为C和C++开发者设计。它提供像素转换、图像缩放、滤波、统计分析、运动检测、对象识别和神经网络等高性能算法。该库针对x86/x64的SSE、AVX、AVX-512、AMX和ARM的NEON等SIMD指令集进行了优化。Simd提供C API和C++接口,支持动态和静态链接,兼容32位和64位的Windows及Linux平台。
py-motmetrics - 多目标跟踪性能评估Python库
GithubMOT指标Python库多目标跟踪开源项目性能评估数据分析
py-motmetrics是一个评估多目标跟踪(MOT)性能的Python库。它实现了CLEAR-MOT和ID等评估指标,支持多种距离度量,可跟踪每帧事件,并提供灵活的求解器后端。该库兼容MOTChallenge基准,使用pandas进行数据分析,易于扩展。py-motmetrics为研究人员和开发者提供了全面评估和比较多目标跟踪算法性能的工具。
SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
SimSwap - 支持高保真图像和视频处理的换脸框架
ACM会议GithubPythonSimSwap人脸交换开源项目高分辨率数据集
SimSwap框架实现任意换脸,支持高保真图像和视频处理。采用单一训练模型,无需再次训练。适用于学术和技术用途,提供详细的训练与测试代码。支持高分辨率数据集VGGFace2-HQ,定期更新进展。欢迎工程师加入团队。高质量案例视频可在Google Drive和Bilibili观看。
smartcore - Rust语言开发的开源机器学习库
APIGithubJupyter NotebookRustSmartCore开源项目机器学习
smartcore是一个Rust语言开发的机器学习库,实现了分类、回归、聚类等多种算法模型。项目提供API接口和文档,并支持Jupyter Notebook环境。作为Rust生态系统的一部分,smartcore为数据科学和机器学习应用提供工具支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号