Project Icon

clip_playground

探索CLIP模型的多种应用包括GradCAM可视化、零样本检测和验证码破解

这个项目展示了CLIP模型的不同应用,包括GradCAM可视化、简单和智能的零样本检测以及验证码破解。用户可以通过Colab链接在线体验各项功能,并调整参数和检测查询以深入探索模型潜力。项目日志定期更新,包含reCAPTCHA绘图改进和检测参数调整,确保用户获得最佳应用体验。

clip-japanese-base - 日语CLIP模型,支持图像和文本的零样本分类与检索
BERTCLIPGithubHuggingface图像分类开源项目文本检索模型视觉任务
该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。
virtual-background - 浏览器内实时视频流虚拟背景替换,支持多个机器学习模型
BodyPixGithubML KitMediaPipeVirtual BackgroundWebAssembly开源项目
该项目展示了如何在浏览器实时视频流中,添加虚拟背景并切换三种预训练机器学习模型,包括BodyPix、MediaPipe Meet Segmentation和ML Kit Selfie Segmentation。用户可以对桌面和移动设备上的不同模型性能进行比较。此项目提供了详细的实现细节、性能分析及改进建议。
TLM Playground - 可信赖语言模型的在线交互式体验平台
AI工具APICleanlabTLM数据集语言模型
TLM Playground是一个在线交互式平台,展示了Cleanlab的可信赖语言模型(Trustworthy Language Model, TLM)技术。平台提供简洁界面,支持单次提示响应和整个数据集的模型运行。网站集成了学习资源、即时体验和API文档链接,便于用户深入了解TLM技术。这个开放的实验环境让开发者和研究者能够探索TLM的潜力和应用场景。
TinyCLIP-ViT-40M-32-Text-19M-LAION400M - 基于亲和力模仿和权重继承的CLIP模型压缩方法
GithubHuggingfaceLAION400MTinyCLIP图像识别开源项目模型模型压缩深度学习
TinyCLIP是一种用于压缩大规模语言-图像预训练模型的跨模态蒸馏方法,采用亲和力模仿和权重继承技术。实验显示,TinyCLIP ViT-45M/32使用ViT-B/32一半的参数达到相似的零样本性能;TinyCLIP ResNet-19M在参数量减少50%的情况下,推理速度提升2倍,在ImageNet数据集上实现56.4%的准确率。
clip-rsicd-v2 - 专为遥感图像优化的零样本分类和检索模型
CLIPGithubHuggingfaceTransformer图像检索开源项目模型遥感图像零样本分类
clip-rsicd-v2是一个基于CLIP的微调模型,专注于提升遥感图像的零样本分类和检索能力。该模型采用ViT-B/32架构和掩码自注意力Transformer分别作为图像和文本编码器。通过在RSICD、UCM和Sydney等遥感数据集上训练,clip-rsicd-v2在多项检索任务中显著超越原始CLIP模型。研究人员可利用此模型深入探究计算机视觉模型的鲁棒性和泛化能力。
ViT-Prisma - 视觉变换器和CLIP模型机制解析开源库
GithubVision Transformer图像处理开源库开源项目机器学习解释性神经网络可视化
ViT-Prisma是一个专注于Vision Transformer和CLIP模型的开源机制解析库。它提供logit归因、注意力可视化和激活修补等技术,用于深入分析模型内部机制。该库还包含ViT训练代码和预训练模型,支持ImageNet-1k和dSprites分类任务。ViT-Prisma为视觉模型可解释性研究提供了实用的工具集。
panoptic-segment-anything - 零样本全景分割融合SAM、Grounding DINO和CLIPSeg的创新方法
CLIPSegGithubGrounding DINOSAM实例分割开源项目零样本全景分割
panoptic-segment-anything项目提出了一种创新的零样本全景分割方法。该方法巧妙结合Segment Anything Model (SAM)、Grounding DINO和CLIPSeg三个模型,克服了SAM在文本感知和语义分割方面的局限性。项目提供Colab notebook和Hugging Face Spaces上的Gradio演示,方便用户体验这一pipeline。此外,预测结果可上传至Segments.ai进行微调,为计算机视觉研究开辟了新的可能性。
CLIP-ViT-L-14-laion2B-s32B-b82K - CLIP-ViT-L-14模型实现高效零样本图像分类和检索
CLIPGithubHuggingfaceLAION-2B图像分类开源项目模型视觉语言模型零样本学习
CLIP-ViT-L-14-laion2B-s32B-b82K模型基于LAION-2B英语数据集训练,在ImageNet-1k上实现75.3%的零样本top-1准确率。它支持零样本图像分类和图文检索等任务,是研究零样本图像分类的重要工具。该模型在JUWELS Booster超级计算机上完成训练,为计算机视觉研究提供了新的可能性。
DFN5B-CLIP-ViT-H-14-378 - 大规模数据筛选优化的视觉语言预训练系统
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN5B-CLIP-ViT-H-14-378是一款基于CLIP架构的视觉语言模型,采用数据过滤网络(DFN)技术从43B未筛选的图像-文本对中提取5B高质量数据进行训练。该模型在多项视觉任务中表现优异,平均准确率达70.94%。支持零样本图像分类,可与OpenCLIP框架无缝集成,为计算机视觉和自然语言处理研究提供了高性能的预训练模型基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号