Project Icon

vit-pytorch

通过PyTorch实现多种视觉Transformer变体

本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。

LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
vits2_pytorch - 单阶段文本到语音转换的效率与质量提升
GithubVITS2单阶段模型对抗学习开源项目文本转语音架构设计
VITS2_pytorch是一款先进的单阶段文本到语音转换模型,采用对抗学习和架构设计改进前代产品。这一最新的非官方实现版本,旨在通过增强模型结构和训练机制,有效提升语音自然度和特征相似性,同时显著降低对音素转换的依赖,从而提高训练和推断的效率。该项目还为专业人士提供了预训练模型和多种语言的样本音频,支持开箱即用的转换学习。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
Transformer-in-Vision - 深入探索Transformer在计算机视觉领域的最新研究与资源
AI模型ChatGPTGithubTransformer-in-Vision多模态开源项目计算机视觉
本页面收录并介绍了最新的基于Transformer的计算机视觉研究和相关资源,内容涵盖机器人应用、视频生成、文本-图像检索、多模态预训练模型等领域。用户可访问开源代码和论文链接,如ChatGPT在机器人领域的应用、DIFFUSIONDB、LAION-5B、LAVIS、Imagen Video和Phenaki等。页面会不定期更新,提供Transformer在视觉领域应用的全面信息和资源汇总。
vit-base-cats-vs-dogs - 基于Vision Transformer的猫狗图像分类模型
GithubHugging FaceHuggingfaceViT模型图像分类开源项目模型猫狗数据集迁移学习
该模型是基于google/vit-base-patch16-224-in21k在cats_vs_dogs数据集上微调的图像分类模型。采用Vision Transformer架构,在评估集上实现98.83%的准确率。模型可用于宠物识别、动物摄影分类等猫狗图像分类任务。开发者可以方便地将其集成到各种应用中,实现高效的猫狗识别功能。
vit_base_patch16_224.orig_in21k - Vision Transformer图像特征提取模型无分类头版本
GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取预训练模型
vit_base_patch16_224.orig_in21k是一个基于Vision Transformer架构的图像特征提取模型,在ImageNet-21k数据集上预训练。模型采用16x16图像块处理,支持224x224输入尺寸,包含8580万参数。移除分类头设计使其专注于特征提取,适合迁移学习和微调。通过timm库可轻松应用于图像分类和特征提取任务,为计算机视觉研究提供有力支持。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
vit_base_r50_s16_384.orig_in21k_ft_in1k - ResNet-Vision Transformer混合模型用于高精度图像分类
GithubHuggingfaceImageNetResNetVision Transformertimm图像分类开源项目模型
本模型结合ResNet与Vision Transformer优势,在大规模ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,实现高效准确的图像分类。具备9900万参数,支持384x384像素输入,可用于分类任务和特征提取。研究人员可通过timm库轻松应用此模型,进行推理或深入研究。
vit-base-patch16-224-in21k - 基于ImageNet-21k预训练的视觉Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
这是一个基于Transformer架构的视觉模型,在包含1400万图像和21843个类别的ImageNet-21k数据集上预训练。模型将图像转换为16x16像素的固定大小patch序列,通过自注意力机制处理。它可用于图像分类等多种视觉任务,提供强大的特征提取能力。模型支持PyTorch和JAX/Flax框架,适用于需要高性能视觉理解的应用场景。
vit_large_patch14_reg4_dinov2.lvd142m - 带寄存器的视觉Transformer模型用于图像特征提取
DINOv2GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取
vit_large_patch14_reg4_dinov2.lvd142m是一个带寄存器的视觉Transformer模型,在LVD-142M数据集上使用自监督DINOv2方法预训练。该模型具有3.044亿参数,可处理518x518大小的图像,适用于图像分类和特征提取任务。它结合了ViT和DINOv2技术,为计算机视觉应用提供了高效的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号