Project Icon

x-unet

集成高效注意力机制的先进U-Net框架

x-unet是一个基于U-Net架构的开源项目,融合了高效注意力机制和最新研究成果。支持2D和3D图像处理,提供嵌套U-Net深度和上采样特征图合并等灵活配置。适用于生物医学图像分割和显著对象检测等任务,是一个功能强大的深度学习工具。

PFENet - 优化少样本分割的先验引导特征增强网络
GithubPFENet少样本分割开源项目深度学习特征提取语义分割
PFENet作为少样本分割网络的代表作,利用先验引导特征增强技术优化分割效果。在PASCAL-5i和COCO等主流数据集上,PFENet展现出卓越性能。该开源项目包含完整实现代码、预训练模型和详细文档,为计算机视觉研究提供了宝贵资源。
segment-anything - 革命性AI模型实现高效图像分割
AI模型GithubSegment Anything图像分割开源项目深度学习计算机视觉
Segment Anything是Meta AI Research开发的图像分割模型,能通过简单输入生成高质量物体遮罩。该模型经过大规模数据训练,具备强大的零样本分割能力。它提供多种版本,支持ONNX导出,并附有示例和文档,便于集成应用。
Segment-Anything-CLIP - 整合Segment-Anything与CLIP的图像分析框架
CLIPGithubsegment-anything人工智能图像分割开源项目计算机视觉
项目通过结合Segment-Anything的分割能力和CLIP的识别功能,构建了一个高效的图像分析框架。系统可自动生成多个分割掩码,并对每个掩码区域进行分类。这种创新方法不仅提高了图像分析的精度,还为计算机视觉领域的研究和应用开辟了新途径。
nn_vis - 创新3D可视化技术助力神经网络分析
3D可视化技术Github开源项目批量归一化神经网络可视化边缘捆绑重要性估计
该项目开发了一种创新的3D神经网络可视化技术。通过批量归一化、微调和特征提取,估算网络各部分重要性。结合边缘捆绑、光线追踪等方法,构建神经网络的3D表示模型。这一技术验证了重要性估计的有效性,并为深入理解复杂神经网络架构开辟了新途径。
torchxrayvision - 胸部X光影像分析工具库
GithubTorchXRayVision开源项目数据集深度学习胸部X光预训练模型
TorchXRayVision是一个开源的胸部X光影像分析工具库,为多个公开数据集提供统一接口和预处理流程。它包含多种预训练模型,可用于快速分析大型数据集、实现少样本学习,以及在多个外部数据集上评估算法性能。该库旨在简化胸部X光影像研究工作流程,提高分析效率。
MedSegDiff - 创新医学图像分割框架
GithubMedSegDiff人工智能医学图像分割开源项目扩散模型深度学习
MedSegDiff是一个创新的医学图像分割框架,基于扩散概率模型(DPM)。该方法通过添加高斯噪声并学习逆向去噪过程来实现分割。利用原始图像作为条件,MedSegDiff从随机噪声生成多个分割图,并进行集成获得最终结果。这种方法能够捕捉医学图像中的不确定性,在多个基准测试中表现优异。MedSegDiff支持多种医学图像分割任务,包括皮肤黑色素瘤和脑肿瘤分割等,并提供详细使用说明和示例。
ISBNet - 高效准确的3D点云实例分割网络实现先进场景理解
3D点云GithubISBNet实例分割开源项目深度学习计算机视觉
ISBNet是一种创新的3D点云实例分割网络,采用实例感知采样和框感知动态卷积技术。通过多任务学习方法和轴对齐边界框预测,ISBNet在ScanNetV2、S3DIS和STPLS3D等数据集上实现了领先的分割精度,同时保持快速推理速度。该方法有效解决了密集场景中相同语义类别物体的分割问题,为3D场景理解提供了新的解决方案。
Open3D-PointNet2-Semantic3D - 使用Open3D和PointNet++进行高效3D数据处理与语义分割
GithubOpen3DPointNet++Semantic3D开源项目机器学习语义分割
该项目演示了如何使用Open3D与PointNet++进行3D点云的加载、预处理及语义分割,提供了高效的点云操作方法和训练预测流程,为Semantic3D数据集提供了简洁优化的基准实现,适用于深度学习应用的快速开发。
unitable - 整合表格识别任务的统一框架
GithubTransformerUniTable开源项目自监督预训练表格结构表格识别
UniTable是一个创新的表格识别框架,统一了训练范式、目标和模型架构。它利用自监督预训练和语言建模,有效处理表格结构、单元格内容和边界框识别。该项目在四个大型数据集上展现最先进性能,并提供完整的推理流程Jupyter Notebook,支持多数据集微调和全面表格识别。
M3D - 推动3D医学图像分析的多模态大语言模型
3D医学图像分析AI医疗GithubM3D医学数据集多模态大语言模型开源项目
M3D是首个针对3D医学分析的多模态大语言模型系列。项目包含最大规模开源3D医学数据集M3D-Data、多任务能力模型M3D-LaMed和全面评估基准M3D-Bench。M3D在图像-文本检索、报告生成、视觉问答、定位和分割等任务中表现优异,为3D医学图像分析领域提供了新的研究方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号