Project Icon

x-unet

集成高效注意力机制的先进U-Net框架

x-unet是一个基于U-Net架构的开源项目,融合了高效注意力机制和最新研究成果。支持2D和3D图像处理,提供嵌套U-Net深度和上采样特征图合并等灵活配置。适用于生物医学图像分割和显著对象检测等任务,是一个功能强大的深度学习工具。

SAM4MIS - 医学图像分割技术的前沿进展
GithubSAM人工智能医学图像分割开源项目深度学习计算机视觉
SAM4MIS项目综述了Segment Anything Model (SAM)和SAM2在医学图像分割领域的应用进展。该项目涵盖了从经验评估到方法改进的全面研究成果,为医学图像分割提供了最新见解。通过持续跟踪和汇总SAM相关研究,SAM4MIS为医学图像分析研究提供了重要参考,促进了该领域技术的创新。
Neural-Gauge-Fields - 创新3D场景表示实现灵活UV映射与高效渲染
3D重建GithubUV映射三平面投影开源项目神经规范场视图合成
Neural-Gauge-Fields项目提出创新3D场景表示方法,通过学习UV映射和三平面投影实现灵活纹理编辑和高效渲染。项目引入InfoInv技术,提升基于网格和MLP的神经场性能。这一方法为3D视图合成、场景编辑和表面重建提供新工具,在计算机图形学和视觉领域展示应用前景。
Diffusion_models_from_scratch - 完整实现扩散模型的开源框架与教程
Diffusion模型GithubImageNetU-Net图像生成开源项目预训练模型
该项目提供了一个完整的扩散模型实现框架,包含DDPM、DDIM和无分类器引导模型。项目特点包括:基于ImageNet 64x64数据集的预训练模型、详细的环境配置和数据准备指南、全面的训练和推理脚本,以及多种模型架构和优化策略。开发者可以利用此框架轻松训练自定义扩散模型或使用预训练模型生成图像。
ModelsGenesis - 3D医疗影像自监督预训练模型
3D医学影像GithubModels Genesis医学图像分析开源项目自学习迁移学习
此项目推出了名为Generic Autodidactic Models的预训练模型,专为3D医学影像应用设计,特别适合标注数据有限的情况。这一模型通过自监督学习实现自我训练,无需人工标注,并能生成各种应用场景的目标模型。Models Genesis性能显著优于从零开始训练的3D模型,甚至超过了包括ImageNet模型在内的2D方法,尤其在分割肝脏、肿瘤和海马体方面表现卓越。
pix2pix3D - 基于2D标签图的3D感知条件图像生成模型
3D生成模型Githubpix2pix3D开源项目条件图像合成神经辐射场语义标签
pix2pix3D是一个3D感知条件生成模型,可以根据2D标签图(如分割图或边缘图)生成逼真的3D对象图像。该模型结合神经辐射场技术,能从多个视角渲染图像。通过同步生成图像和对应的标签图,pix2pix3D实现了交互式3D编辑功能,为可控的3D感知图像合成开辟了新途径。
ritm_interactive_segmentation - 迭代训练与掩码引导的交互式图像分割方法
Github交互式图像分割开源项目神经网络计算机视觉迭代训练遮罩引导
该项目提出了一种基于掩码引导的迭代训练方法,用于交互式图像分割。这种方法能够分割新对象,也可从外部掩码开始修正。采用简单前馈模型,无需额外优化即可达到先进性能。项目提供训练和测试代码、预训练模型及交互式演示,支持多种数据集和评估指标。
DeepImage-an-Image-to-Image-technology - 强大而多样化的图像生成与转换技术集合
CycleGANDeepImageGANGithubImage-to-ImageStyleGAN开源项目
DeepImage是一个综合性的图像生成与转换技术项目,包含多种先进算法如pix2pixHD、pix2pix和CycleGAN等。该项目提供了图像生成演示、理论研究资料和实践指南,涵盖从基础到前沿的生成对抗网络(GAN)技术。DeepImage为研究人员和开发者提供了一个全面的学习和实验平台,助力探索图像生成与转换的多种可能性。
mcunet - 面向微控制器的深度学习框架
GithubMCUNetTinyEngine开源项目微控制器深度学习物联网设备
MCUNet是面向微控制器的系统-算法协同设计框架,包含TinyNAS和TinyEngine两大核心组件。该框架在严格内存限制下提升深度学习性能,相比现有方案推理速度提高1.5-3倍,内存占用降低2.7-4.8倍。MCUNet为IoT应用提供高效深度学习基础设施,推动边缘AI发展。
neuralangelo - 从图像重建高精度3D表面模型的神经网络技术
3D重建GithubNeuralangelo开源项目机器学习神经网络计算机视觉
Neuralangelo是一个开源项目,专注于从图像重建高精度3D表面模型。该项目利用深度学习方法,提供了完整的代码实现,包括数据预处理、模型训练和网格提取功能。Neuralangelo在复杂场景重建中表现优异,适用于计算机视觉和图形学研究。项目文档包含详细使用说明和常见问题解答,便于研究人员快速上手。
distill-sd - 更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成
GithubStable Diffusion开源项目模型压缩神经网络训练细节预训练检查点
基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号