Project Icon

FocalNet

突破注意力机制的新型视觉模型架构

FocalNet是一种创新的视觉模型架构,无需使用注意力机制。其核心的焦点调制技术在多项视觉任务中超越了现有的自注意力方法。该模型在ImageNet分类和COCO检测等基准测试中表现优异,同时保持了高效简洁的实现。FocalNet具有平移不变性、强输入依赖性等特点,为计算机视觉领域提供了一种全新的建模思路。

ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
dm_nfnet_f0.dm_in1k - NFNet:无归一化层的高效图像分类模型
GithubHuggingfaceImageNet-1kNFNettimm图像分类开源项目模型特征提取
dm_nfnet_f0.dm_in1k是一款基于NFNet(无归一化网络)架构的图像分类模型。该模型在ImageNet-1k数据集上训练,拥有7150万参数,计算量为7.2 GMACs。通过采用Scaled Weight Standardization技术和策略性放置的标量增益,该模型无需使用归一化层即可实现高性能。dm_nfnet_f0.dm_in1k适用于图像分类、特征提取和图像嵌入等多种任务,为大规模图像识别应用提供了高效解决方案。
flash-attention - 高效注意力机制加速深度学习模型训练
CUDAFlashAttentionGPU加速GithubPyTorch开源项目注意力机制
FlashAttention是一种高效的注意力机制实现,通过IO感知算法和内存优化提升计算速度并降低内存消耗。它支持NVIDIA和AMD GPU,适用于多种深度学习框架。最新的FlashAttention-3版本针对H100 GPU进行了优化。该项目提供Python接口,可集成到现有模型中,有助于加速大规模深度学习模型的训练过程。
DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
QFormer - 四边形注意力机制提升视觉Transformer性能
GithubVision Transformer图像分类开源项目注意力机制目标检测计算机视觉
QFormer是一种创新的视觉Transformer模型,采用四边形注意力机制替代传统窗口注意力。该模型通过可学习的四边形回归模块,将默认窗口转换为目标四边形进行计算,从而更好地建模不同形状和方向的目标。在图像分类、目标检测、语义分割和人体姿态估计等多项视觉任务中,QFormer在保持低计算成本的同时,性能显著优于现有的视觉Transformer模型。
MagNet - 多尺度语义分割框架提升图像精度
GithubMagNet卷积神经网络多尺度框架开源项目语义分割高分辨率数据集
MagNet是一种多尺度语义分割框架,采用多阶段处理方法解决高分辨率图像中的局部歧义问题。每个处理阶段对应一个放大级别,实现从粗到细的信息传播。在城市景观、航拍场景和医学图像等高分辨率数据集上的实验显示,MagNet的性能显著超越现有方法,为高分辨率图像的精确语义分割提供了新的技术方案。
NAFNet - 无需非线性激活函数的图像修复网络
GithubNAFNet图像修复图像去噪图像去模糊开源项目超分辨率
NAFNet是一种无需非线性激活函数的图像修复网络,通过简单的基线超过现有SOTA方法并显著降低计算成本。在GoPro数据集上,该网络的图像去模糊性能达到33.69 dB PSNR,在SIDD数据集上的图像去噪性能为40.30 dB PSNR,均显著超越前代SOTA性能。NAFNet适用于图像去噪、去模糊和立体图像超分辨率等任务。
d2-net - 深度学习驱动的联合特征检测与描述
CNND2-NetGithub开源项目深度学习特征提取计算机视觉
D2-Net是一个用于联合检测和描述局部图像特征的卷积神经网络模型。该项目提供模型实现、预训练权重、特征提取脚本和MegaDepth数据集训练流程。D2-Net在图像匹配和3D重建等计算机视觉任务中表现优异,提高了特征提取的准确性和效率。项目支持多尺度特征提取,并包含在不同数据集上训练的模型权重。
ffn - 专为大脑组织体积EM数据集实例分割的神经网络
Flood-Filling NetworksGithubTensorFlow图像处理实例分割开源项目神经网络
Flood-Filling Networks (FFNs) 是一种专为复杂大型形状实例分割设计的神经网络模型,特别适用于大脑组织的体积电子显微镜数据集。FFN模型在处理大规模、高分辨率的神经影像数据时表现出色,能够准确识别和分割复杂的神经元结构。该开源项目在FIB-25数据集上展现了优秀性能,为神经科学研究提供了强大的分割工具,适合需要高精度神经元分割的研究人员使用。
HorNet - 基于递归门控卷积的高效视觉骨干网络
GithubHorNetImageNetPyTorchRecursive Gated Convolution开源项目高阶空间交互
HorNet是一个基于递归门控卷积的视觉骨干网络家族,专注于高效的高阶空间交互。项目提供了多个在ImageNet数据集上训练和评估的模型,如HorNet-T、HorNet-S和HorNet-B,广泛应用于图像分类和点云理解等领域。项目页面提供详细的训练和评估说明及模型下载链接。HorNet在提升图像和3D对象分类精度方面表现优异,是计算机视觉研究中的重要工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号