Project Icon

graphrag

提升文本数据结构化处理能力的先进工具

GraphRAG是一个革新的数据管道和转换套件,旨在利用大型语言模型(LLMs)的力量从非结构化文本中提取有意义的结构化数据。该项目通过加快索引过程并优化提示调整,提供在Azure上的端到端用户体验,有效增强LLMs处理私有数据的能力。此外,GraphRAG的研究和开发还专注于推动负责任的AI使用,确保用户能够最大限度地发挥系统的潜力并减少限制的影响。

Neum AI - 开源框架助力构建高效RAG数据管道
AI工具Neum AIRAG向量数据库嵌入数据管道
Neum AI框架专注于简化RAG和语义搜索的数据基础设施构建。它整合了多种连接器,便于快速创建数据管道,高效处理各类数据。框架兼顾本地开发与云端部署,满足不同规模需求。其核心功能包括实时数据同步、全面可观测性和智能检索,有效提升数据管理效率。Neum AI为构建可靠、高性能的RAG系统提供了全面解决方案。
graphologue - 实时可视化大型语言模型响应,提升信息获取与理解
GithubGraphologueLLMOpenAI APIUIST 2023交互图表开源项目
Graphologue将大型语言模型(如GPT-4)的文本响应实时转化为互动图表,使用创新提示和界面设计便于提取实体和关系,支持复杂信息任务。用户可以调整图示和提交上下文提示,促进与LLM的非线性对话,增强信息探索和组织能力。
RAGFoundry - 开源框架增强大语言模型检索能力
GithubRAG Foundry大语言模型开源项目数据集创建检索增强生成模型微调
RAG Foundry是一个开源框架,通过RAG增强数据集微调模型来提升大语言模型的外部信息检索能力。该框架包含数据集创建、模型训练、推理和评估四个模块,支持快速原型设计和RAG实验。其模块化设计和可定制工作流程,有助于研究人员和开发者高效改进LLM的检索增强生成能力。
rag-search - 智能数据检索和排名优化工具
API 请求FastAPIGithubRAG Search APIthinkany.ai开源项目机器学习模型
RAG Search API是由thinkany.ai开发,旨在优化搜索结果的效率与准确性。这一API实现了多样化的搜索功能,包括信息重排、筛选详细数据等,并能通过FastAPI快速部署。其简便的安装过程使得开发者能够轻松集成此技术,从而提升数据处理的效能。
KG_RAG - 解锁医学知识图谱的力量和KG-RAG框架概述
GPTGithubKG-RAG大型语言模型开源项目生物医学知识图谱
KG-RAG,一种融合生物医学知识图谱SPOKE与大型语言模型的检索增强生成系统,专为提升特定领域的语义理解而设计。了解其配置、运行方法及在生物医学应用中的实例。
text2vec-base-chinese-rag - 基于CoSENT框架的中文RAG文本嵌入模型
FAISSGithubHuggingfaceLangchainRAG向量检索开源项目模型自然语言处理
text2vec-base-chinese-rag采用CoSENT训练框架构建,专注于中文文本理解和RAG任务。模型支持文本相似度计算,集成Langchain和FAISS向量存储功能,实现高效文档检索。项目提供自定义LLM的RAG实现示例,便于开发者快速应用和扩展。
RAG-Survey - AI内容生成中的增强检索方法全面指南
AI生成内容GithubRAGRetrieval-Augmented Generation大型语言模型开源项目知识增强
深入探索增强检索技术如何推动AI内容生成的进步。RAG-Survey项目综合最新研究,涵盖查询基准、潜在表达式和逻辑基础RAG等多种方法,持续更新其调研报告和文献库。项目专注于提升检索增强生成模型,精准高效地应用于开放域问答、代码生成等多个AI领域。
RAG-Retrieval - 使用RAG-Retrieval全面提升信息检索效率与精度
GithubRAG-Retrieval开源项目微调排序模型推理检索模型
RAG-Retrieval项目通过统一方式调用不同RAG排序模型,支持全链路微调与推理。其轻量级Python库扩展性强,适应多种应用场景,提升排序效率。更新内容包括基于LLM监督的微调及其Embedding模型的MRL loss性能提升。
self-rag - 通过自反学习使语言模型实现按需检索、生成和评估的框架
GithubSelf-RAG关键词生成开源项目检索增强生成自我反思语言模型
Self-RAG是一种创新框架,通过自反学习使语言模型实现按需检索、生成和评估。该方法预测反思标记,支持多次检索或跳过检索,并从多角度评估生成内容。这不仅提高了模型输出的事实性和质量,还保持了语言模型的通用性能。
beyondllm - RAG系统开发与部署的一站式工具包
AI教育BeyondLLMGithubRAG系统大语言模型开源项目
BeyondLLM是一个面向检索增强生成(RAG)系统的综合开发工具包。它集成了自动化流程、可定制评估指标和多种大型语言模型支持,简化RAG系统的实验、评估和部署过程。该工具有助于减少LLM幻觉,提升系统可靠性,支持RAG应用的快速迭代和监控。BeyondLLM兼容Python 3.8-3.11版本,为开发者提供简洁高效的API接口。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号