Project Icon

fklearn

通过函数式编程简化机器学习问题的解决方案

fklearn基于函数式编程原则,旨在简化实际机器学习问题的解决。其核心原则包括:模型验证应反映真实情况、生产模型应与已验证模型一致、模型可快速投产,以及结果的可重复性和易于深入分析。用户可通过pip或源码安装fklearn,并可参考详尽文档和社区支持以快速入门。

MachineLearningWithMe - 全面深入的机器学习算法实践教程
Github人工智能开源项目数据分析机器学习模型算法
MachineLearningWithMe是一个系统化的机器学习教程项目,内容涵盖从环境配置到高级算法的多个方面。项目详细讲解并实现了线性回归、逻辑回归、K近邻、朴素贝叶斯、决策树、支持向量机、聚类和降维等核心算法。特别强调动手实践,指导读者从零开始实现各类算法,并提供泰坦尼克号生还预测等实际案例。此外还包括模型评估、特征工程和集成学习等进阶内容,适合初学到中级水平的学习者深入探索机器学习领域。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
handson-unsupervised-learning - Python实现无监督学习的实用指南
GithubPythonTensorFlowscikit-learn开源项目无监督学习机器学习
该项目为Python无监督学习提供实践指南,介绍scikit-learn和TensorFlow框架处理未标记数据的方法。涵盖聚类、降维、生成模型等算法,并提供代码示例。项目包含Windows、macOS环境配置说明,支持GPU加速。内容涉及模式发现、异常检测、自动特征工程等应用,适合机器学习从业者参考学习。
Machine-Learning-is-ALL-You-Need - 实现流行机器学习和深度学习算法的各种方法
GithubMachine LearningPython代码实现开源项目深度学习罗辑学习
这个仓库致力于使用纯Python和各种开源框架实现热门的机器学习和深度学习算法,涵盖分类、回归、强化学习、计算机视觉、自然语言处理和图神经网络等多个领域。提供灵活的代码切换选项,多种实现方法可以帮助用户深入理解每种算法的内部机制以及成功原因。
FLAML - 高效的Python库,用于自动化机器学习和模型调优
AutoMLFLAMLGithubPython开源项目机器学习模型优化
FLAML是一款轻量级且高效的Python库,旨在简化大语言模型和机器学习模型的自动化工作流程。通过多智能体对话框架和经济高效的自动调优功能,它帮助用户找到优质模型并优化GPT-X工作流。FLAML支持代码优先的AutoML和调优,能处理大规模搜索空间和复杂约束,广泛适用于分类、回归等任务。适用于Python 3.8及以上版本,并提供详细文档和多种扩展选项,满足用户的不同需求。
mleap - 快速部署机器学习流水线与算法的实用工具包
GithubMLeapScikit-learnSpark开源项目性能机器学习数据管道
MLeap提供高性能、便携、易于集成的生产库,支持将Spark和Scikit-learn的机器学习流水线导出为便携格式并执行。通过其执行引擎和序列化格式,数据科学家和工程师可以无需依赖Spark或Scikit-learn环境,将数据流水线和算法轻松部署到生产环境中。MLeap支持多种序列化格式(如JSON、Protobuf),并与现有技术高度集成,提供用户灵活定制数据类型和转换器的能力。
tensorflow-federated - 隐私保护的分布式机器学习框架
GithubTensorFlow Federated分散数据开源框架开源项目机器学习联邦学习
TensorFlow Federated是一个开源框架,用于分布式数据的机器学习和计算。它提供高级和低级API,允许开发者在保护隐私的同时利用分散数据进行模型训练和评估。支持自定义联邦学习算法,包含单机模拟环境,适合研究和实验。除了预测模型训练,还可用于分布式数据的聚合分析。
ailearning - AI学习资源与实战教程
AI learningGithub开源项目推荐系统机器学习深度学习算法
Ailearning项目提供全面的机器学习和深度学习教程,涵盖实战资料、基础知识以及权威视频资源。适用于具备Python基础的程序员,帮助快速掌握AI技术。项目包含在线阅读、教学视频和多种数据下载链接,提升学习效率。
tsfresh - 时间序列特征自动提取和分析的Python开源工具
GithubPythontsfresh开源项目时间序列机器学习特征提取
tsfresh是一个开源Python库,专注于时间序列数据的自动特征提取。它集成了统计学、时间序列分析、信号处理和非线性动力学的算法,并提供了特征选择机制。该工具可处理多种采样数据和事件序列,提供100多种预定义特征,并通过内置过滤程序评估特征重要性。tsfresh支持回归和分类任务,兼容sklearn、pandas和numpy,可在本地或集群环境运行,为时间序列分析提供了高效解决方案。
machine-learning - Ocademy开源AI学习平台 覆盖Python到MLOps全方位课程
AI学习GithubOcademy开源教育开源项目机器学习深度学习
Ocademy是一个开源AI学习平台,涵盖Python、数据科学、机器学习、深度学习和MLOps等领域。平台提供AI课程清单、生成式AI工具和互动式教程,旨在为所有人创造平等的AI学习机会。项目采用开放协作模式,欢迎社区贡献,致力于帮助繁忙的成年人进入AI领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号