Project Icon

LESS

选择有影响力的数据进行有针对性的指令调整

LESS项目提供了一种数据选择方法,通过选择有影响力的数据来增强特定功能。该项目涵盖了安装要求、数据准备、数据选择和模型训练的详细步骤,并提供相应的脚本和指南。通过预热训练、构建梯度数据存储库、任务数据选择和最终训练四个步骤,提升模型在下游任务中的表现能力。利用Flan v2、COT、Dolly和Open Assistant等训练数据集,以及MMLU、TydiQA和BBH等评估数据集,优化特定任务的模型性能。

t-few - 参数高效微调方法优于GPT-3上下文学习
GithubT-Few参数高效微调少样本学习开源项目自然语言处理预训练语言模型
t-few项目提出一种少样本参数高效微调方法,在多个NLP任务中表现优于GPT-3的上下文学习。项目开源代码包含环境配置、实验运行等功能,并在RAFT基准测试中达到领先水平。这为NLP领域少样本学习提供了高效且低成本的解决方案,研究人员可基于此进行深入研究。
LLaMA-Cult-and-More - 最新大模型参数、微调数据和硬件需求解析
AnthropicEfficient训练GithubMetaOpenAI多模态LLM开源项目
LLaMA-Cult-and-More项目详细介绍了最新大模型的参数数量、微调数据集与技术,并提供LLM对齐后训练的实用指南,包括数据集、基准数据集和高效训练库。从预训练模型到后训练模型,项目涵盖了许多有趣的内容,帮助您了解关键功能和最新进展。
xllm - 便捷微调大语言模型,集成最新优化技术
GithubX—LLM大语言模型开源项目模型训练训练优化集成开发
X—LLM是一个便捷的微调大语言模型工具,集成了诸如QLoRA、DeepSpeed、GPTQ、Flash Attention 2和FSDP等最新优化方法,显著提升训练效率。用户可以专注于模型和数据的优化,而不需要繁琐的代码编写。该工具支持多种Transformer模型,并可无缝对接HuggingFace Hub,适用于生产环境和快速原型设计,有助于用户更好地掌控模型训练进度并降低开销。
Linly - 中文LLaMA和Falcon模型:优化的中文预训练和对话能力
FalconGithubLLaMALinly-OpenLLaMA中文对话模型开源项目训练数据
该项目提供中文对话和基础模型,包括Linly-ChatFlow、Chinese-LLaMA和Chinese-Falcon模型及其训练数据。通过扩充LLaMA和Falcon的中文词表,使用中英文语料进行预训练,提升了模型在中文语境中的表现。项目还包括Linly-OpenLLaMA模型,支持量化和边缘设备推理。最新的Linly-Chinese-LLaMA-2模型通过混合语料预训练并定期更新,用户可以在线体验和在本地环境中进行训练和评估。
llama-trl - 使用 PPO 和 LoRA 微调 LLaMA
GithubLLaMA-TRLLoRAPPOReward Model TrainingSupervised Fine-tuning开源项目
本项目LLaMA-TRL通过PPO和LoRA技术进行大规模语言模型的微调,采用TRL(变压器强化学习)和PEFT(参数高效微调)方法。本文详细介绍了从安装依赖到具体实现的步骤,包括监督微调、奖励模型训练和PPO微调,助力开发者显著提升模型性能和任务适应能力。
llama-3-2-1b-sft - 超大规模对话数据集的精细调优AI模型
GithubHuggingfacellama-3-2-1b-sft开源项目微调模型训练数据集超参数超大规模语言模型
该项目将NousResearch的Llama-3.2-1B模型进行精细调优,使用HuggingFaceH4/ultrachat_200k数据集以提高对话处理性能。在多GPU分布式训练中,使用Adam优化器和余弦学习率调度策略,该模型在验证集上的损失率降低至1.2759。适用于广泛的自然语言处理应用,特别是在对话生成和交互式AI领域中。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - 提升文本生成技术的精度和合规性
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2准确性开源项目未过滤模型量化
基于Llama-3.1-8B-Instruct的项目,旨在提高文本生成的精确性和合规性,并遵循Meta的Llama 3.1社区协议。量化的Lexi模型在多种数据集上评估,IFEval数据集精度达77.92%。用户可自定义系统提示以优化效果,建议在服务部署前添加对齐层以确保合规。使用生成内容时需谨慎负责。
ml-engineering - 大规模语言模型与多模态模型的训练方法
BLOOM-176BContextual.AIGithubHuggingFaceLarge Language ModelsVLM开源项目
本指南系统介绍了方法、工具和逐步操作说明,帮助工程师成功训练大规模语言模型(LLM)和多模态模型(VLM)。内容涵盖丰富的脚本和命令,适合LLM/VLM训练工程师和操作员使用。基于作者在开源BLOOM-176B和IDEFICS-80B模型训练中的经验,提供有效解决方案,并持续更新,服务于ML社区。
LongLoRA - 探索大规模长上下文语言模型的高效训练与实用应用
GithubLLaMA2LoRALongAlpaca开源项目深度学习长上下文语言模型
LongLoRA项目开发了一种高效微调方法,处理大型长上下文语言模型,涵盖了从7B至70B的各种模型规模和LongAlpaca-12k实验性数据集。项目支持多种微调方式,在基凊测试中验证了模型性能,技术可应用于多种NLP任务,助力复杂语言处理。实现显著性能优势,为企业和研究人员在从机器翻译到自动摘要等NLP任务中提供了有效的解决方案。
LoRA - 大型语言模型的低秩适配方法与参数节省
DeBERTaGLUEGPT-2GithubLoRARoBERTa开源项目
LoRA通过低秩分解矩阵实现大型语言模型的低秩适配,减少了训练参数数量,实现高效的任务切换和存储节省。它在GLUE基准测试中的表现与完全微调相当或更好,同时显著降低了参数需求。LoRA支持RoBERTa、DeBERTa和GPT-2等模型,并已集成到Hugging Face的PEFT库中,提供了便捷的适配解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号