Project Icon

techniques

一系列用于卫星与航空图像处理的深度学习技术,包括分类、分割和对象检测等多种关键技术

本网站详细介绍一系列用于卫星与航空图像处理的深度学习技术,包括分类、分割和对象检测等多种关键技术。这些技术有助于处理复杂的图像尺寸和多元的对象类别,适用于城市规划、环境监测等多个领域。

Image_Processing - 全面的图像处理实践指南与代码实现
Github图像变换图像处理开源项目插值数字图像处理边缘检测
Image_Processing项目提供了从基础到高级的图像处理实践指南。涵盖图像插值、几何变换、边缘检测等多个主题,通过丰富的代码示例帮助开发者掌握各种图像处理技术。该项目是入门图像处理的理想学习资源,适合希望系统学习图像处理的开发人员。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
yolov8m-building-segmentation - 卫星图像中YOLOv8建筑物分割的精准实现
GithubHuggingfaceYOLOv8ultralyticsplus卫星建筑分割图像分割开源项目模型
该模型专注于通过Yolov8m实现卫星图像中建筑物的精准分割,借助PyTorch以提高分析准确性,mAP@0.5的精度分别为0.62261和0.61275。使用ultralyticsplus库及Python示例可实现快速图像加载与预测,适合高精度建筑物分割的应用需求。
learnopencv - 从OpenCV编程到实践深度学习技巧
AIGithubLearnOpenCV开源项目教程深度学习计算机视觉
LearnOpenCV.com 博客提供了众多关于计算机视觉、深度学习及人工智能的最新技术和代码实例。该平台聚焦于为AI学习者及技术实践者提供丰富的资源和项目实践,帮助用户全面掌握并应用AI技术。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
Cybertiks - 卫星遥感技术赋能智能农业分析平台
AI工具QSIS人工智能卫星图像数据集成远程感应
Cybertiks利用卫星遥感技术和人工智能模型,为全球客户提供农业远程感测解决方案。通过整合光学、雷达等多源数据,结合量子计算技术,实现精准的物质识别、分类和量化。平台提供农田分析、土壤监测和作物管理服务,助力提高农业生产效率,促进可持续发展。
computervision-recipes - 计算机视觉领域的实用示例和指南,涵盖面部识别、图像识别等多种视觉任务
AzureGithubPyTorch图像识别开源项目模型部署计算机视觉
computervision-recipes为数据科学家和机器学习工程师提供计算机视觉领域的实用示例和指南,涵盖面部识别、图像识别等多种视觉任务,并便利地利用先进库加速从概念到实现的全过程,并在云端实现模型训练与部署。
ML-ProjectKart - 机器学习和人工智能的优质开源项目集合
GithubML-ProjectKart开源项目机器学习深度学习自然语言处理计算机视觉
这个平台展示了多种机器学习、深度学习、计算机视觉和自然语言处理项目,帮助不同水平的用户熟练掌握ML/AI算法。技术从业人员可以通过遵循贡献指南参与项目贡献,获取实践经验并提升技能,推动开源社区的持续发展。
Satellite-Imagery-Datasets-Containing-Ships - 完整版雷达和光学卫星图像船舶检测分类数据集
Github光学卫星数据集分类开源项目船舶检测语义分割雷达卫星数据集
本页面列举了多个用于船舶检测、分类、语义分割和实例分割任务的雷达和光学卫星图像数据集,包括SSDD、OpenSARship、HRSID等。这些数据集涵盖了RadarSat-2、TerraSAR-X和Sentinel-1等卫星,提供了丰富的图像和详细的标注信息,非常适合多个船舶检测和分析任务。
PaddleSeg - 高性能端到端图像分割工具套件,支持从训练到部署
AI套件GithubPaddleSegPaddleX图像分割开源项目飞桨
PaddleSeg是一款基于飞桨PaddlePaddle的图像分割套件,内含超过45种模型算法和140多个预训练模型,支持语义分割、交互式分割、Matting及全景分割。应用场景广泛,包括医疗、工业、遥感等。具备高精度、高性能、模块化以及全流程特性,兼容多个操作系统如Linux、Windows、MacOS,适用于多种硬件的训练和部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号