Project Icon

RetroMAE

创新的检索导向语言模型预训练技术

RetroMAE是一种创新的检索导向语言模型预训练方法。通过掩码自编码器技术,该方法在MS MARCO和BEIR等基准测试中取得了显著性能提升。项目开源了预训练模型和微调工具,并提供了详细使用说明。RetroMAE在监督检索任务中表现卓越,同时展现出优秀的零样本迁移能力,为信息检索研究带来新的突破。项目提供了多个预训练模型,包括在维基百科和图书语料上预训练的基础版本,以及在MS MARCO数据集上微调的特定版本。研究人员可以通过Hugging Face轻松加载这些模型,进行实验或进一步改进。

e5-small-v2 - 轻量级多语言嵌入模型用于语义搜索和自然语言处理
GithubHuggingfaceMTEBsentence-transformers开源项目文本相似度模型模型评估自然语言处理
e5-small-v2是一款轻量级多语言嵌入模型,适用于语义搜索和自然语言处理任务。该模型在MTEB基准测试中表现优异,涵盖文本分类、检索、聚类和语义相似度等多个领域。尽管体积小巧,e5-small-v2仍能有效处理多种语言,为开发者提供了一个高效且多用途的嵌入解决方案。
e5-small-unsupervised - 无监督预训练模型用于提升文本嵌入与句子相似度
E5-small-unsupervisedGithubHuggingface句子相似性句子转换器开源项目文本嵌入无监督学习模型
该无监督对比预训练模型通过弱监督方法进行预训练,无需人为标注,实现高效的句子相似度计算和信息检索。模型具备12层架构和384维嵌入空间,适用于MS-MARCO数据集等的查询与段落编码。输入文本需使用特定前缀(如“query:”与“passage:”)以求最佳效果。模型包含详细示例代码和训练细节,适用于BEIR和MTEB基准评价,支持英文文本,文本长度限制为512个标记。
recurrent-memory-transformer - 记忆增强型Transformer为Hugging Face模型提升长序列处理能力
GithubHugging FaceRecurrent Memory Transformer开源项目机器学习模型自然语言处理长文本处理
Recurrent Memory Transformer (RMT)是为Hugging Face模型设计的记忆增强型循环Transformer。通过在输入序列中添加特殊记忆标记,RMT实现了高效的记忆机制,能够处理长达1M及以上的token序列。项目提供RMT实现代码、训练示例和评估工具,在BABILong等长文本基准测试中表现优异,为研究长序列处理提供了有力支持。
LongRAG - 改进长文本LLM的检索增强生成框架
GithubLongRAGTevatronWikipedia数据开源项目检索增强生成长上下文LLM
LongRAG项目推出新型检索增强生成框架,采用4K token长检索单元提升RAG性能。项目核心包括长检索器和长阅读器,平衡检索与阅读任务复杂度。除提供完整代码实现,还开放处理后的语料库数据集。这为研究长文本LLM与RAG结合提供了重要资源,有助于探索该领域的未来发展方向。
ko-reranker - 基于Amazon SageMaker的韩语文本重排序模型优化指南
Amazon SageMakerGithubHuggingfaceReranker开源项目文本分类机器学习模型自然语言处理
ko-reranker是一个基于BAAI/bge-reranker-large的韩语文本重排序模型,通过直接输出相似度分数优化搜索和问答系统性能。该模型在Amazon SageMaker上使用翻译后的MS MARCO数据集进行微调,在评估指标上优于未经重排序的基线。项目提供了使用Transformers和SageMaker部署模型的指南,适用于需要提高韩语文本检索准确性的应用场景。
rome - 自动回归变换器上的高级模型编辑技术
GPT-2 XLGPT-JGithubROMERank-One Model Editing开源项目自动回归变换器
ROME项目提供了自动回归变换器的模型编辑技术,支持OpenAI的GPT-2 XL与EleutherAI的GPT-J。项目包括安装指南、应用示例(如模型重写)及评估工具,帮助开发者理解和应用模型修改。
NLP-Tutorials - 从搜索引擎到预训练模型的全面教程
GithubNLP开源项目机器学习深度学习神经网络自然语言处理
NLP教程全面介绍多种自然语言处理模型,涉及搜索引擎技术、词汇及句子理解,并深入探讨seq2seq、Transformer、BERT和GPT等先进模型,包括实用的代码示例和理论分析。
makeMoE - 从零构建的稀疏混合专家语言模型的makemore项目
DatabricksGithubmakeMoEpytorch开源项目稀疏专家混合语言模型
makeMoE是一个基于Andrej Karpathy的makemore项目, 从零构建的稀疏混合专家语言模型。它借鉴了makemore的部分组件,例如数据预处理和生成莎士比亚风格文本。在架构上,makeMoE引入了稀疏专家混合、Top-k门控和噪声Top-k门控等改进。项目在Databricks上使用单一A100 GPU开发,支持大规模GPU集群扩展,并通过MLFlow进行指标跟踪。项目强调代码的可读性和修改性,适合深入学习和改进。
MixEval - 动态更新的大语言模型评测基准
GithubLLM评估MixEval动态评估基准测试开源项目模型排名
MixEval是一个动态更新的大语言模型评测基准,结合现有基准和真实用户查询构建而成。该基准在保持高准确度的同时,实现了快速、低成本和可重复的评测。MixEval提供更全面、公平的查询分布,并通过定期更新机制避免数据污染。作为一个高效可靠的评测工具,MixEval适用于各类大语言模型研究和应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号