Project Icon

RetroMAE

创新的检索导向语言模型预训练技术

RetroMAE是一种创新的检索导向语言模型预训练方法。通过掩码自编码器技术,该方法在MS MARCO和BEIR等基准测试中取得了显著性能提升。项目开源了预训练模型和微调工具,并提供了详细使用说明。RetroMAE在监督检索任务中表现卓越,同时展现出优秀的零样本迁移能力,为信息检索研究带来新的突破。项目提供了多个预训练模型,包括在维基百科和图书语料上预训练的基础版本,以及在MS MARCO数据集上微调的特定版本。研究人员可以通过Hugging Face轻松加载这些模型,进行实验或进一步改进。

bert-base-cased - 使用预训练双向Transformer模型提升语言理解能力
BERTGithubHuggingface句子分类开源项目掩码语言建模模型自监督学习预训练
BERT是一种通过自监督学习预训练的双向Transformer模型,旨在改善英语语言理解。基于大型语料库的预训练,使其能学习句子的双向表示,适用于序列分类、标记分类和问答任务。通过Masked Language Modeling和Next Sentence Prediction目标进行预训练,BERT在各类任务中展现出卓越表现,但注意选择合适的训练数据以避免潜在偏见。
ms-marco-TinyBERT-L-6 - 跨编码器在信息检索与重排序中的应用
Cross-EncoderGithubHuggingfaceMS MarcoSentenceTransformers信息检索开源项目模型模型性能
TinyBERT-L-6模型在MS Marco Passage Ranking任务中进行了优化,解决信息检索中的查询与段落排序问题。该模型通过交叉编码器实现高效的信息检索,提升查准率并缩短排序时间。支持Transformers与SentenceTransformers工具使用,简化实现流程,展示良好性能。项目提供详尽的训练代码和性能评估,助力深度学习场景下的信息处理任务优化。
msmarco-MiniLM-L12-en-de-v1 - 基于MS MARCO的英德双语文本重排序模型
GithubHuggingfaceMS Marco信息检索开源项目德英翻译模型自然语言处理跨语言检索模型
基于MS MARCO数据集开发的英德双语跨编码器模型,主要用于文本段落重排序。模型在TREC-DL19评测中NDCG@10分别达到72.94(英-英)和66.07(德-英),在GermanDPR数据集上MRR@10为49.91。支持SentenceTransformers和Transformers框架,处理速度为900对文档/秒,适用于跨语言信息检索场景。
ms-marco-MiniLM-L-4-v2 - MS Marco跨编码器模型优化信息检索和段落排序效率
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型评估自然语言处理
ms-marco-MiniLM-L-4-v2是一款针对MS Marco段落排序任务优化的跨编码器模型。在TREC DL 19和MS Marco开发集评测中,该模型的NDCG@10和MRR@10分别达到73.04和37.70,展现出优秀性能。它适用于查询-段落匹配和重排序等信息检索任务,每秒可处理2500个文档,在效率和性能间取得良好平衡。研究人员可通过Transformers或SentenceTransformers库轻松应用此模型。
roberta-large - 大型英语预训练模型,适合多种任务优化
GithubHuggingfaceRoBERTaTransformer模型开源项目模型语言模型遮蔽语言建模预训练模型
RoBERTa是一个自监督学习的变压器模型,通过掩码语言建模(MLM)目标优化英语语言的表示。主要用于细调下游任务,如序列和标记分类以及问答。此模型预训练于包括BookCorpus和Wikipedia在内的五个大型语料库,使用BPE分词法和动态掩码训练,实现双向句子表示,并在GLUE测试中表现优异,适合在PyTorch和TensorFlow中应用。
gte-multilingual-reranker-base - 高效多语言文本重排模型,提升信息检索性能
GithubHuggingfacegte-multilingual-reranker-base多语言处理开源项目文本嵌入模型阿里巴巴云高性能
gte-multilingual-reranker-base是GTE系列中的多语言文本重排模型,适用于多语言信息检索。其采用编码器架构,在推理速度和硬件需求上均有显著优势,支持超70种语言及处理长达8192词元的文本。另有商业API版本可通过阿里云获得,实验结果获得优秀评价,详见相关论文。
REST - 创新检索式推测解码加速大语言模型生成
GithubREST开源项目推测解码推理加速检索式生成语言模型
REST是一种创新检索式推测解码方法,利用数据存储检索草稿令牌以加速大语言模型生成。无需额外训练,可即插即用于现有语言模型。在HumanEval和MT-Bench测试中,REST展现显著速度提升,为提高大语言模型效率开辟新途径。
LongMem - 为语言模型赋予长期记忆能力
GithubLongMem开源项目评估语言模型长期记忆预训练
LongMem项目通过创新的长期记忆机制提升了语言模型的性能。该项目实现了记忆库、检索机制和联合注意力等核心技术,使模型在内容学习任务中表现优异。项目开源了完整代码,包括环境配置、模型结构和评估方法,为研究者提供了便利的复现和探索工具。LongMem为自然语言处理领域开辟了新的研究方向。
chinese-macbert-base - 通过MLM误差校正任务优化中文BERT模型的性能
GithubHuggingfaceMacBERT句子排序预测开源项目掩码语言模型模型自然语言处理预训练模型
项目通过引入MLM误差校正预训练任务,减少预训练和微调过程中的差异,提升中文自然语言处理的模型表现。采用同义词工具进行相似词替换,改进传统BERT的[MASK]标记。此外,还结合全词掩码、N-gram掩码和句序预测技术,增强模型功能。MacBERT的架构与原始BERT兼容,为研究人员提供灵活的替换方案。
splade-v3 - SPLADE-v3稀疏神经信息检索模型的最新进展
GithubHuggingfaceSPLADE信息检索开源项目文本检索机器学习模型自然语言处理
SPLADE-v3是SPLADE系列的最新稀疏神经信息检索模型,基于SPLADE++SelfDistil优化而来。该模型采用KL散度和MarginMSE混合损失函数,每次查询选取8个负样本进行训练。在性能方面,SPLADE-v3在MS MARCO开发集上达到40.2的MRR@10分数,BEIR-13测试中获得51.7的平均nDCG@10。这一成果为稀疏神经信息检索领域树立了新标准。研究人员可以通过GitHub平台获取并应用SPLADE-v3模型,以提升信息检索效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号