Project Icon

addons

扩展TensorFlow功能的开源库

TensorFlow Addons是一个开源库,提供了不在核心TensorFlow中的新增功能,包括操作符、层、指标、损失和优化器等。尽管该项目计划在2024年5月结束维护,但它仍然在许多机器学习项目中扮演重要角色。推荐迁移到TensorFlow社区的其他库,如Keras, Keras-CV和Keras-NLP。更多信息请参阅TensorFlow Addons的GitHub页面。

Tensorflow-bin - 适用于RaspberryPi的Tensorflow Lite预构建二进制文件,支持XNNPACK和半精度推理功能
GithubPython APIRaspberryPiTensorflow LiteTensorflow-binXNNPACK开源项目
提供适用于RaspberryPi的Tensorflow Lite预构建二进制文件,支持XNNPACK和半精度推理功能。兼容多个操作系统和Python版本,支持Tensorflow v1到v2的多版本安装。通过简便的安装脚本,用户可以快速部署和运行Tensorflow模型,实现高效的设备端推理。
training_extensions - OpenVINO框架助力快速训练和部署计算机视觉模型
GithubOpenVINO开源项目模型训练深度学习计算机视觉迁移学习
OpenVINO Training Extensions是一个专注计算机视觉的低代码迁移学习框架。它基于PyTorch和OpenVINO工具包开发,提供简洁API和CLI命令,支持分类、检测、分割等多种任务的模型训练、推理和部署。该框架具备自动配置、分布式训练、混合精度等功能,可快速构建高效准确的视觉AI模型。
onnx-go - 面向Go语言的ONNX模型解析和运行接口
GithubGorgoniaGo语言ONNX开源项目深度学习神经网络
onnx-go项目提供了一个Go语言接口,用于解析和运行ONNX二进制模型,帮助开发者轻松集成机器学习功能。虽然其API仍然是实验性的,但它不需要数据科学方面的专业知识。该项目已停止维护,且随着深度学习领域的发展,预计会被新的解决方案取代。
extension-cpp - PyTorch自定义C++/CUDA运算符扩展示例
C++扩展CUDA扩展GithubPyTorch开源项目性能优化自定义操作
extension-cpp项目演示了为PyTorch开发C++/CUDA扩展的方法,包括实现自定义CPU和CUDA内核的mymuladd运算符。项目提供构建和测试指南,以及Python、C++和CUDA版本的性能对比。适用于PyTorch 2.4+,是学习PyTorch扩展开发的实践示例。
1 - 开源自然语言处理工具库提升文本处理效率
AI模型GithubHuggingfacetransformers开源项目机器学习模型深度学习自然语言处理
transformers是一个开源自然语言处理工具包,旨在通过简化模型训练和应用,提升机器学习项目的效率。该库提供丰富功能和预训练模型,便于执行各种文本分析和生成任务。
accel-brain-code - 深度学习和机器学习算法库集合
Github开源项目强化学习机器学习深度学习生成对抗网络自动编码器
accel-brain-code是一个开源项目,集成了多个深度学习和机器学习算法库。它包括自动编码器、生成对抗网络、深度强化学习等模块,旨在通过概念验证和研发创建原型。该项目探索了AI民主化后的机器学习研发可能性,为快速开发复杂AI系统提供了基础。其功能涵盖自动摘要、强化学习、生成对抗网络等多个领域。
my-awesome-AI-bookmarks - 全面的AI学习资源库 从理论到实践的精选集合
GithubTensorFlow人工智能开源项目机器学习深度学习神经网络
这是一个综合性的人工智能资源库,涵盖深度学习和机器学习领域。收录了业界顶尖专家的文章、代码实现和核心概念,内容从基础理论延伸到实际应用,包括迁移学习、强化学习和自然语言处理等热门主题。项目汇集了丰富的学习材料,适合AI研究者和从业者参考使用。
optuna - 自动化机器学习超参数优化框架
GithubOptunaPython开源框架开源项目机器学习超参数优化
Optuna是一个面向机器学习的开源超参数优化框架。它采用define-by-run风格API,特点是轻量级、通用性强和平台无关。Optuna支持Python式搜索空间定义、高效优化算法、易于并行化和快速可视化。框架可处理多目标优化、约束优化和分布式优化等任务,适用于Python 3.7+版本,并集成多个第三方库。
awesome-machine-learning - 机器学习框架与资源汇总 多语言开源项目集锦
Github开源项目数据分析机器学习深度学习自然语言处理计算机视觉
Awesome Machine Learning项目汇集了按编程语言分类的机器学习开源资源。涵盖计算机视觉、自然语言处理、深度学习等领域的框架、库和工具,涉及Python、Java、C++等多种语言。此外还收录相关书籍、课程和博客,为机器学习从业者提供全面参考。项目保持活跃更新,欢迎社区贡献优质资源。
recommender-system-tutorial - 使用TensorFlow和Keras构建推荐系统的实践教程
GithubMovieLens数据集TensorFlow开源项目推荐系统机器学习深度学习
本项目提供了一个详细的推荐系统开发教程,基于TensorFlow Recommenders和Keras。教程介绍了信息检索和推荐系统基础,通过Jupyter notebook展示了MovieLens数据集处理、特征预处理、检索和排序模型构建,以及Spotify Annoy相似项搜索。内容涵盖了推荐系统的核心技术和实践方法,适合学术研究者和业界专业人士学习。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号