Project Icon

recommenders-addons

大规模推荐系统中的动态嵌入技术增强体验

TensorFlow Recommenders Addons通过引入动态嵌入技术,使TensorFlow更适合搜索、推荐和广告模型的训练,全面兼容TensorFlow优化器和CheckPoint功能,支持GPU上的训练和推理。项目增强了推荐系统性能,解决了哈希冲突问题,并提供多种动态嵌入存储选项(如cuckoohash_map和Redis)。支持TF serving和Triton Inference Server,以便在大规模环境中部署和评估复杂推荐模型。

POI-Recommendation - 智能兴趣点推荐的前沿研究资源库
GithubPOI推荐个性化推荐图神经网络开源项目时空数据深度学习
这个项目汇集了兴趣点(POI)推荐领域的最新研究成果,包括深度学习、图神经网络和注意力机制等技术在POI推荐中的应用。项目重点关注时空依赖性、用户偏好建模和冷启动等问题,旨在改进POI推荐的个性化和情境感知能力。资源库收录了大量高质量论文及其代码实现,为POI推荐研究提供了全面的参考资料。
daisyRec - 开源推荐系统评估和基准测试框架
GithubPython工具包协同过滤基准测试开源项目推荐系统深度学习
daisyRec是一个支持多维度公平比较的Top-N推荐任务基准测试框架。该开源工具整合了传统和深度学习推荐算法,支持CUDA加速和多个公开数据集。通过提供GUI命令生成器和严格的评估标准,daisyRec致力于推动推荐系统研究的可复现性和公平比较。
dataloader - 适用于 TensorFlow、PyTorch 和 JAX 的 GPU 优化数据加载器
GPU优化GithubMerlin DataloaderPyTorchTensorFlow开源项目推荐系统
Merlin Dataloader 提供适用于 TensorFlow、PyTorch 和 JAX 的 GPU 优化数据加载器,大幅提升推荐模型的训练速度。优势包括速度提升超10倍、支持大于内存的数据集、每个周期的数据随机化及分布式训练。这些特点使其成为高效训练推荐模型的理想工具。
metarank - 实时个性化搜索和推荐服务,优化CTR和用户体验
GithubMetarank个性化开源开源项目排序服务推荐系统
Metarank是一个开源排名服务,帮助构建个性化的语义/神经搜索和推荐系统。通过整合点击和购买等客户信号,该服务可以优化搜索结果和推荐内容,实现最大化CTR。其快速性能支持大规模结果集的重新排序,并提供开箱即用的排名信号计算,节省开发时间。与多种流处理系统集成,Metarank能处理大量RPS,支持横向扩展。另外,用户可以使用LLM,在搜索查询中理解其真实含义,提供更智能的搜索解决方案。
gte-small - 基于ONNX权重的Transformers.js模型嵌入及余弦相似度计算
GithubHuggingfaceJavaScriptONNXTransformers.js开源项目模型特征提取相似度计算
本项目介绍了使用ONNX权重与Transformers.js库计算模型嵌入和余弦相似度的过程。通过安装Transformers.js库,可以轻松地创建特征提取管道,并进行句子嵌入和相似度计算。项目默认采用8位量化模型,同时支持全精度版本。ONNX模型为未来的WebML应用做好了准备,建议通过Optimum工具进行ONNX格式转换以实现网络兼容。
HierarchicalKV - 分层键值存储技术助力大规模推荐系统优化
GPU存储GithubHierarchicalKVNVIDIA Merlin开源项目推荐系统键值存储
HierarchicalKV是NVIDIA Merlin项目的组成部分,为推荐系统提供分层键值存储功能。该库可在GPU高带宽内存和主机内存中存储特征嵌入,支持大规模推荐模型训练。通过绕过CPU和实现表大小约束策略,HierarchicalKV提升了性能和内存利用率。这使得NVIDIA GPU更适合训练大型搜索、推荐和广告模型,简化了复杂推荐模型的构建、评估和部署过程。
fastembed - 轻量且高速的Python文本嵌入式生成库,面向多模态支持
FastEmbedGithubONNX RuntimeQdrant多语言模型开源项目文本嵌入
FastEmbed,一个为速度和效率优化的Python库,支持多语言且易于扩展的嵌入式模型生成工具,适用于服务器和GPU环境。简化高效编码,无需依赖庞大的数据下载,适用于多种数据类型和复杂任务,是开发精确嵌入系统的理想工具。
PERSIA - 突破百万亿参数的推荐模型训练框架
GithubPERSIA大规模训练并行计算开源项目推荐系统深度学习
PERSIA代表'并行推荐训练系统与混合加速',是一个创新的开源框架,专为训练超大规模深度学习推荐模型而设计。该系统能够处理高达100万亿参数的模型,在效率和可扩展性方面表现卓越。PERSIA不仅在公共数据集上展现出优势,还在大型商业应用中得到实际验证。作为首个公开的PyTorch基础推荐训练系统,PERSIA为推荐算法的研究和应用开辟了新的可能性。
llm-embedder - FlagEmbedding 高性能文本向量化模型助力信息检索与语义搜索
FlagEmbeddingGithubHuggingface开源项目微调文本嵌入检索增强模型重排模型
FlagEmbedding项目开发了一系列高性能文本向量化模型,可将文本转化为低维密集向量。这些模型在信息检索、文本分类、聚类和语义搜索等任务中表现出色,也可用于构建大语言模型的向量数据库。项目包含BGE和LLM-Embedder等多个中英双语模型,在MTEB和C-MTEB基准测试中均取得第一。FlagEmbedding还提供模型微调代码和性能评估工具,便于进行定制化训练和测试。
Gift Recommender - 智能个性化礼物推荐服务
AI工具AI推荐Gift Recommender个性化礼物兴趣爱好礼物推荐
这是一个基于人工智能的在线礼物推荐服务。通过分析接收者的基本信息和兴趣爱好,系统能够推荐最适合的礼物选项。平台还提供礼物比较功能,帮助更好地理解接收者的喜好。该服务旨在解决送礼难题,提供便捷、智能的礼物选择体验。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号