Project Icon

Contra-PPO-pytorch

Contra NES游戏中的Proximal Policy Optimization算法实现与训练方法

本项目利用Proximal Policy Optimization (PPO)算法,通过Python代码训练AI智能体进行Contra NES游戏。PPO算法由OpenAI提出,其早期版本曾用于训练OpenAI Five在电竞中取得胜利。项目提供了详细的训练指南、示例代码,并支持Docker环境,方便进行模型的训练和测试。本项目展示了PPO算法在游戏AI中的实际应用效果。

overcooked_ai - 基于游戏的多智能体协作研究平台
GithubOvercooked-AI人工智能协作任务开源项目强化学习环境基准
Overcooked_ai是一个基于热门游戏Overcooked的多智能体协作研究平台。该项目模拟厨房协作烹饪场景,提供环境模拟、智能体训练和评估等功能。它要求AI智能体高效配合完成煮汤等任务,支持人机协作研究。作为重要的基准平台,Overcooked_ai已被多篇顶会论文采用,对推进人工智能协作研究具有重要意义。
awesome-deep-rl - 深度强化学习领域的最新研究综述与应用案例
Deep Reinforcement LearningGithubModel-basedPolicy GradientReinforcement LearningUnsupervised RL开源项目
该项目收录了深度强化学习领域的重要研究成果和应用示例,包括最新的学术论文、框架、算法和应用案例,覆盖无监督、离线、价值基础和策略梯度等多种方法。项目内容经常更新,提供最新的研究动态和工具,如2024年的HILP与2022年的EDDICT。适合从事人工智能、机器学习和强化学习的专业人员与爱好者了解该领域的最新进展。
RLcycle - 开源强化学习框架 提供多种算法实现
GithubHydraPyTorchRayWandB开源项目强化学习
RLcycle是一个开源的强化学习框架,实现了多种经典算法如DQN、A2C/A3C、DDPG和SAC。框架基于PyTorch构建,集成了Hydra配置管理、Ray并行计算和WandB日志记录功能。RLcycle提供可重用组件便于快速开发,支持Atari和PyBullet等环境,并附有使用指南和性能基准。该项目适合研究人员和开发者学习和实践各类强化学习算法。
continual-learning - PyTorch 在三种不同场景中实现各种持续学习方法
Continual LearningGithubNeurIPSPyTorchSynaptic Intelligenceincremental learning开源项目
此项目实现了在增量学习场景中的PyTorch深度神经网络实验,支持学术设置下的分类问题,且可进行更加灵活的无任务增量学习实验。项目提供了演示脚本和详细的安装指导,适合多种经典方法的性能对比和自定义实验。
ncps - NCP、LTC 和 CfC 有线神经模型的 PyTorch 和 TensorFlow 实现
CfCGithubLTCNeural Circuit PoliciesPyTorchTensorFlow开源项目
神经电路策略(NCPs)是一种设计稀疏递归神经网络的方法,灵感来源于秀丽隐杆线虫的神经系统。该开源项目提供与PyTorch和TensorFlow兼容的模块,增强可审计的自主性。其安装步骤简便,并且提供了丰富的文档和互动教程,帮助用户从基础到复杂模型的创建。多种示例和教程,包括在Google Colab上的演示,让用户快速掌握NCPs的应用。
pwnagotchi - 通过AI自动化捕获和破解WiFi网络中的WPA密钥
A2C算法GithubLSTM网络PwnagotchiWiFi破解bettercap开源项目
Pwnagotchi项目利用A2C算法和bettercap工具,自动学习和优化WPA密钥捕获。通过LSTM与MLP特征提取器提高破解效率,并在不同WiFi环境中不断改进。多个设备可通过自定义协议协作,实现更高效的网络入侵。项目提供详细文档和社区支持,适合对WiFi安全和AI技术感兴趣的用户。
Best-AI-Agents - 顶尖AI代理实现创新自动化和智能任务执行
AI代理Github开源开源项目无代码平台智能助手自动化
Best-AI-Agents项目展示一系列先进的人工智能技术,展现出先进的自动化代理带来的智能解决方案。项目涉及广泛的商业和教育领域应用,包括代码生成、研究创新和模型部署等多种功能。其中涵盖的AI代理如AutoGPT、AgentGPT和Cognosys,展示出各自在机器学习领域的独特应用和功能。
HandyRL - 高效实用的分布式强化学习框架
GithubHandyRLPyTorch分布式训练开源项目强化学习离线策略修正
HandyRL是一个基于Python和PyTorch的分布式强化学习框架,已在Kaggle竞赛中取得优异成绩。它采用离线策略修正的策略梯度算法和学习者-工作者架构,支持自定义环境和大规模训练。HandyRL的高并行能力和实用性使其在竞争性游戏AI开发中表现出色,能够快速训练出强大的AI模型。
PARL - 灵活高效的强化学习开源框架
GithubPARL分布式训练并行计算开源项目强化学习深度学习
PARL是一个开源的强化学习框架,专注于提供高效、灵活的开发环境。该框架具有良好的可复现性、大规模训练支持、高可重用性和易扩展性。PARL基于Model、Algorithm和Agent三个核心抽象,并提供简洁的分布式训练API。框架支持DQN、DDPG、SAC等多种算法实现,在多个强化学习挑战赛中表现出色。PARL适用于各类复杂任务的智能体训练,为强化学习研究和应用提供了有力工具。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号