Project Icon

pytorch-cifar100

使用PyTorch高效训练和测试CIFAR-100数据集

pytorch-cifar100项目提供了一套完整的训练和测试框架,使得使用者能在CIFAR-100数据集上通过多种网络架构实施图像识别。支持的网络包括VGG, ResNet, DenseNet等多种深度学习模型,并详细记录每种模型的错误率。项目还包括自定义数据集模块的示例代码,供不熟悉数据处理的用户参考。项目提供了清晰的代码,便于使用者根据需求调整模型训练与测试。

SSD-Tensorflow - 目标检测的单一网络实现
COCOGithubPascal VOCSSDTensorFlowVGG开源项目
SSD是一种高效的目标检测框架,利用单一网络结构实现物体识别。该项目提供了TensorFlow的重实现版本,支持VGG架构并且易于扩展到其他变种,如ResNet和Inception。项目包括数据集接口、网络定义和数据预处理模块,用户可以通过提供的脚本进行模型训练和评估,支持Pascal VOC数据集。代码和示例帮助用户快速上手并应用于实际检测任务。
PyTorch-VAE - PyTorch中多种变分自编码器的实现与训练示例
GithubPyTorchPyTorch VAE变分自编码器图像生成开源项目深度学习
PyTorch-VAE项目实现了多种变分自编码器(VAE),专注于结果的可重复性,包括从Vanilla VAE到VQ-VAE的众多模型。所有模型都在CelebA数据集上训练,确保一致的对比结果。代码简洁易用,支持PyTorch和PyTorch Lightning,适合研究人员和开发者快速构建、调试和优化VAE模型。
gluon-cv - 计算机视觉领域的深度学习模型工具包,支持PyTorch和MXNet框架
GithubGluonCV图像分类对象检测开源项目深度学习计算机视觉
GluonCV是一个面向工程师、研究人员和学生的计算机视觉深度学习工具包,支持快速原型设计。其主要功能包括可复现SOTA结果的训练脚本、对PyTorch和MXNet框架的支持、大量预训练模型,以及简化实现的API设计和社区支持。用户还可以通过AutoGluon执行图像分类和目标检测任务。
pytorch-cpp - C++ 实现的 PyTorch 教程,为深度学习研究者提供从基础到高级的全面指南
C++GithubLibTorchPyTorch开源项目教程深度学习
本项目提供了 C++ 版本的 PyTorch 教程,适用于从基础到高级的深度学习研究者,涵盖线性回归、卷积神经网络和生成对抗网络等内容。支持 macOS、Linux 和 Windows 的多平台编译和运行,项目要求包括 C++-17 兼容编译器、CMake 和合适版本的 LibTorch。含有全面的构建与运行指南,以及交互式教程和 Docker 支持。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
resnet50d.ra2_in1k - 基于ResNet-D架构的高效图像分类与特征提取模型
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
ResNet-D是一款在ImageNet-1k数据集训练的图像分类模型,采用ReLU激活函数和三层卷积结构,包含2560万参数。模型支持224x224尺寸训练输入和288x288测试输入,集成RandAugment增强技术,可实现图像分类、特征提取等计算机视觉任务。
resnet-50-finetuned-cats_vs_dogs - ResNet-50微调模型实现高精度猫狗图像分类
GithubHuggingfaceResNet-50图像分类开源项目模型模型微调深度学习猫狗识别
项目利用微软的ResNet-50架构,通过在cats_vs_dogs数据集上进行微调,开发出一个高效的猫狗图像分类模型。训练过程中使用Adam优化器和线性学习率调度器,仅需3个训练周期即达到优异性能:评估集准确率98.93%,验证损失0.0889。这一成果展示了预训练模型在特定图像分类任务中的适应性和高效性。
densenet201.tv_in1k - DenseNet图像分类模型实现高效特征提取与精准分类
DenseNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习计算机视觉
DenseNet201是一个在ImageNet-1k数据集上训练的图像分类模型。该模型拥有2000万参数,支持224x224像素输入,适用于图像分类、特征图提取和图像嵌入等任务。其密集连接的卷积网络结构不仅提供准确的分类结果,还能生成丰富的特征表示。模型通过timm库提供预训练权重,便于快速部署和使用。
fastai - 一个为从业者提供快速提供在标准深度学习领域中提供最先进的高级组件,并提供可以混合和匹配的低级组件构建新方法的深度学习库
GPU优化GithubPyTorchfastai开源项目深度学习计算机视觉
fastai是一个深度学习库,提供高层组件以快速实现高性能结果,同时为研究人员提供可组合的低层组件。通过分层架构和Python、PyTorch的灵活性,fastai在不牺牲易用性、灵活性和性能的情况下,实现了高效的深度学习。支持多种安装方式,包括Google Colab和conda,适用于Windows和Linux。学习资源丰富,包括书籍、免费课程和详细文档。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号