Project Icon

TinyCLIP-ViT-8M-16-Text-3M-YFCC15M

高效压缩CLIP模型的跨模态蒸馏方法

TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。

CLIP-ViT-g-14-laion2B-s12B-b42K - 用于零样本图像分类的先进研究工具
CLIP ViT-g/14GithubHuggingfaceLAION-5B图像分类多模态模型开源项目模型零样本学习
该模型专为研究社区而设计,采用LAION-5B数据集中的英语子集进行训练。它帮助研究人员探索零样本与任意图像分类的可能性,适用于跨学科的研究。该模型仅推荐用于研究目的,不适合用于商业化或未经测试的环境,并强调确保其安全和适当使用。
jina-clip-v1 - 集成文本图像检索与文本相似度分析的多模态嵌入模型
CLIPGithubHuggingfaceJina AI图像检索多模态嵌入开源项目文本检索模型
jina-clip-v1是Jina AI开发的英语多模态嵌入模型,支持高效文本-图像和文本-文本检索。它结合了传统文本嵌入和跨模态模型的优势,适用于多模态检索增强生成应用。该模型在Flickr和MSCOCO跨模态检索任务中表现出色,文本相似度评估能力也与专业文本嵌入模型相当。
ViT-SO400M-14-SigLIP - 基于SigLIP的视觉-语言模型实现零样本图像分类
GithubHuggingfaceSigLIPViT图像分类开源项目机器学习模型自然语言处理
ViT-SO400M-14-SigLIP是基于WebLI数据集训练的视觉-语言预训练模型,采用sigmoid损失函数进行图像和文本的联合学习。该模型在零样本图像分类任务中表现出色,具有良好的跨模态理解能力。通过OpenCLIP和timm库,用户可以方便地使用该模型生成图像和文本嵌入。ViT-SO400M-14-SigLIP适用于图像分类、图像检索等多种计算机视觉和自然语言处理任务。
CLIP-convnext_base_w-laion2B-s13B-b82K - ConvNeXt CLIP模型在ImageNet零样本分类中达到70.8%以上准确率
CLIPConvNeXtGithubHuggingfaceLAION-5BOpenCLIP开源项目模型零样本图像分类
这是一系列基于LAION-5B数据集训练的CLIP ConvNeXt-Base模型。经过13B样本训练后,模型在ImageNet零样本分类中实现了70.8%以上的Top-1准确率,显示出比ViT-B/16更高的样本效率。模型使用timm的ConvNeXt-Base作为图像塔,并探索了增强图像增强和正则化的效果。作为首个在CLIP ViT-B/16和RN50x4规模下训练的ConvNeXt CLIP模型,它为零样本图像分类研究提供了新的选择。
siglip-so400m-patch14-224 - 增强图像文本任务的性能,探索形状优化模型
GithubHuggingfaceSigLIPWebLI对比学习开源项目模型视觉零样本图像分类
SigLIP通过sigmoid损失函数优化了CLIP模型的图像和文本匹配性能。此模型在WebLi数据集上预训练,可实现更大的批量训练,同时在小批量下表现出色。适用于零样本图像分类和图像文本检索任务,能在不同环境下获得高效结果。该模型在16个TPU-v4芯片上训练三天,而图像预处理中使用标准化和归一化,提升了计算效率。
chinese-clip-vit-large-patch14 - 结合ViT-L/14和RoBERTa-wwm-base的中文图文对比模型
Chinese-CLIPGithubHuggingface图像编码器图文相似度开源项目文本编码器模型零样本分类
这一模型采用ViT-L/14和RoBERTa-wwm-base进行编码,在大规模中文图文数据集上训练,支持高效的图文嵌入和相似度计算。项目提供直观的API和多项任务评估,展现了在零样本图像分类和图文检索上的杰出表现。
clip-flant5-xxl - 基于VQAScore论文的强大图像文本检索模型
CLIP-FlanT5-XXLFlan-T5GithubHuggingfaceVQAScore图像文本检索开源项目模型视觉语言生成模型
CLIP-FlanT5-XXL是一个基于google/flan-t5-xxl微调的图像文本检索模型,由Zhiqiu Lin等研究者开发。这个视觉语言生成模型专门针对VQAScore论文中的任务进行了优化。采用Apache-2.0许可证的CLIP-FlanT5-XXL能够高效处理图像和文本之间的关联。该模型在Hugging Face平台上提供了演示,技术细节可在GitHub仓库中查阅。
internlm-xcomposer2d5-7b-4bit - 简化大型语言模型的文本与图像处理新纪元
4位量化模型GithubHuggingfaceInternLM-XComposer开源项目文本图像理解模型视频理解长上下文能力
InternLM-XComposer2.5在文本与图像理解领域展现非凡性能,其应用灵活性媲美GPT-4V,仅靠7B参数即可完成复杂任务。模型通过24K图文上下文训练与96K扩展能力,适用于大量输入输出任务。此外,项目提供了4-bit量化模型来有效降低内存消耗,并支持使用Transformers快速集成,涵盖从视频理解到多图对话的多种应用场景。
vit_large_patch14_clip_224.openai - 探索OpenAI提出的CLIP模型在计算机视觉任务中零样本分类的潜力
CLIPGithubHuggingface偏见公平性开源项目模型计算机视觉零样本学习
OpenAI开发的CLIP模型通过对比损失训练大量的图像与文本对展示了其在计算机视觉任务中实现零样本分类的能力。这一模型尤其适合AI研究人员用以深入理解计算机视觉模型的鲁棒性及泛化能力,同时关注于它的潜在局限与偏见。尽管在细粒度分类和对象计数任务中存在不足,CLIP提供了对于模型在不同任务表现及相关风险的深入认知。需要注意的是,CLIP模型并不适用于商业用途,且其数据训练主要基于英语环境。
ViT-SO400M-14-SigLIP-384 - 采用SigLIP技术的大规模视觉-语言预训练模型
GithubHuggingfaceSigLIPViT-SO400M-14WebLI图像文本对比开源项目模型零样本图像分类
ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号