Project Icon

AdversarialNetsPapers

综合资源集合揭示生成对抗网络的应用与理论进展

AdversarialNetsPapers 作为一个致力于生成对抗网络(GANs)的论文与资源集,包括影像转换、面部属性操作等应用范畴以及理论研究和机器学习实践。项目自2014年以来,积累包含大量关键论文与对应代码,为研究者与开发者构建了一个深度学习、图像处理及生成模型的知识库。

AIGS - AI生成图像作为数据源的前沿探索与应用
AI生成图像Github开源项目数据源深度学习综述计算机视觉
AIGS项目系统研究了AI生成图像(AIGC)作为数据源的最新发展。通过对方法和应用的分类,该项目全面概述了AIGC在视觉领域的进展,包括生成模型、神经渲染等技术,以及在2D/3D视觉感知、图像生成和自监督学习等方面的应用。此外,项目整理了相关数据集,为AIGC研究提供了丰富资源。
data-augmentation-review - 全面数据增强技术助力机器学习模型优化
GitHubGithubPython库开源项目数据增强机器学习计算机视觉
该项目汇集了多领域数据增强资源,包括计算机视觉、自然语言处理、音频和时间序列分析。内容涵盖GitHub仓库、开源库、学术论文等,详细介绍了图像变换、文本生成、音频处理等增强技术。此外,还收录了自动增强和特定领域增强方法,为机器学习研究人员和实践者提供了全面的数据增强参考。
awesome-conditional-content-generation - 条件内容生成的前沿技术与资源集锦
Github人工智能内容生成动作生成图像生成开源项目视频生成
这是一个综合性的条件内容生成资源库,主要聚焦于人体动作、图像和视频生成领域。项目汇集了最新研究论文和代码实现,包括音乐、文本和音频驱动的动作生成,以及人体动作预测等多个研究方向。同时还收录了条件图像和视频生成的相关资源,为该领域的研究和开发提供了丰富的参考材料。
gen-cv - 综合AI图像生成处理与分析的开源加速器
Azure Machine LearningGithubOpenAIStable DiffusionVision AI图像处理开源项目
gen-cv是一个丰富的开源资源库,集合了多种图像生成、处理和分析的示例。该项目整合了Azure Machine Learning、Computer Vision、OpenAI和Stable Diffusion等先进技术,涵盖引导式图像生成、视频分析、头像创建和模型微调等领域。通过提供实用示例,gen-cv旨在帮助开发者探索和实现先进的计算机视觉解决方案,推动AI视觉技术的应用和创新。
SRGAN - 使用生成对抗网络提升单图像超分辨率效果
GithubSRGANTensorLayerXVGG19开源项目计算机视觉超分辨率
本项目展示了使用生成对抗网络(GAN)如何实现单图像的高分辨率超分辨率。使用预训练的VGG19模型和高分辨率图像进行训练,支持多种深度学习框架,如TensorFlow、PaddlePaddle、MindSpore,未来还将支持PyTorch。项目提供完整的训练和评估指南,并通过简单的代码修改可以切换不同的后端框架。适用于图像处理和计算机视觉领域的研究人员和开发人员,项目中展示了技术实现的详细结果,还提供了参考文献和讨论资源。
JGAN - Jittor框架上27种GAN模型的实现与加速对比
GANGithubJittorPyTorch人工智能开源项目深度学习
JGAN项目在Jittor深度学习框架上实现了27种经典生成对抗网络(GAN)模型,包括ACGAN、CycleGAN和DCGAN等。相比PyTorch,这些模型平均加速185%,最高达283%。项目提供详细使用说明和性能对比数据,为GAN研究和应用开发提供全面的模型库支持。
awesome-generative-ai - 现代生成式人工智能项目和服务指南
Generative AIGithubOpenAI人工智能内容生成开源项目机器学习
awesome-generative-ai是一个综合性平台,聚焦最先进的生成式人工智能技术与项目。这些技术基于丰富数据训练的机器学习算法,能创造独特的图像、声音和文本。覆盖艺术、编程支持、交互式聊天等多个应用领域,本平台不仅展示成熟项目如GPT模型、Stable Diffusion,也鼓励社区成员贡献想法,共推技术进步。
AnimeGANv3 - 使用AnimeGANv3实现高效的照片动画转换
AnimeGANv3Github动漫风格转换图像处理开源项目深度学习生成对抗网络
AnimeGANv3是一种新型双尾生成对抗网络,能够快速将照片转换为各种动画风格。支持的风格包括油画、可爱、8bit和素描等。最新更新提供了面部到油画风格的新模型,并且在多个平台上提供了在线演示和使用指南,适用于不同操作系统和设备。该工具不仅易于安装和使用,还支持高效推理和视频动画转换,满足爱好者和专业人士的需求。
Awesome-CVPR2024-ECCV2024-AIGC - 2024年CVPR与ECCV会议AIGC论文与代码汇总
AIGCAwesome-CVPR2024-AIGCCVPR2024ECCV2024Github开源项目论文和代码
本页面整理了2024年CVPR和ECCV会议上有关人工智能生成内容(AIGC)的精选论文与代码,汇总了最新的研究进展和成果。提供详细的资源和技术分析,方便研究人员和开发者参考使用。
Guided-pix2pix - 引导式图像转换,双向特征变换的创新应用
Github双向特征转换图像翻译开源项目深度学习神经网络计算机视觉
Guided-pix2pix项目推出创新的图像转换方法,运用双向特征变换技术提高引导式图像生成的精确度。该方法在姿势迁移、纹理迁移和深度上采样领域展现出优异性能,生成的图像质量更高、更贴合引导信息。项目开放完整代码和预训练模型,为研究人员提供便利的实验和开发环境。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号