Project Icon

DI-engine

通用决策智能引擎

DI-engine是基于PyTorch和JAX的开源决策智能引擎。它采用Python优先和异步原生设计,提供任务和中间件抽象,整合环境、策略和模型等决策核心概念。支持DQN、PPO、SAC等多种深度强化学习算法,以及多智能体、模仿学习、离线强化学习等前沿方法。DI-engine致力于标准化决策智能环境和应用,可用于学术研究和原型开发。


Twitter PyPI Conda Conda update PyPI - Python Version PyTorch Version

Loc Comments

Style Read en Docs Read zh_CN Docs Unittest Algotest deploy codecov

GitHub Org's stars GitHub stars GitHub forks GitHub commit activity GitHub issues GitHub pulls Contributors GitHub license Hugging Face Open in OpenXLab discord badge slack badge


Updated on 2024.06.27 DI-engine-v0.5.2

Introduction to DI-engine

Documentation | 中文文档 | Tutorials | Feature | Task & Middleware | TreeTensor | Roadmap

DI-engine is a generalized decision intelligence engine for PyTorch and JAX.

It provides python-first and asynchronous-native task and middleware abstractions, and modularly integrates several of the most important decision-making concepts: Env, Policy and Model. Based on the above mechanisms, DI-engine supports various deep reinforcement learning algorithms with superior performance, high efficiency, well-organized documentation and unittest:

  • Most basic DRL algorithms: such as DQN, Rainbow, PPO, TD3, SAC, R2D2, IMPALA
  • Multi-agent RL algorithms: such as QMIX, WQMIX, MAPPO, HAPPO, ACE
  • Imitation learning algorithms (BC/IRL/GAIL): such as GAIL, SQIL, Guided Cost Learning, Implicit BC
  • Offline RL algorithms: BCQ, CQL, TD3BC, Decision Transformer, EDAC, Diffuser, Decision Diffuser, SO2
  • Model-based RL algorithms: SVG, STEVE, MBPO, DDPPO, DreamerV3
  • Exploration algorithms: HER, RND, ICM, NGU
  • LLM + RL Algorithms: PPO-max, DPO, PromptPG
  • Other algorithms: such as PER, PLR, PCGrad
  • MCTS + RL algorithms: AlphaZero, MuZero, please refer to LightZero
  • Generative Model + RL algorithms: Diffusion-QL, QGPO, SRPO, please refer to GenerativeRL

DI-engine aims to standardize different Decision Intelligence environments and applications, supporting both academic research and prototype applications. Various training pipelines and customized decision AI applications are also supported:

(Click to Collapse)
  • Traditional academic environments

    • DI-zoo: various decision intelligence demonstrations and benchmark environments with DI-engine.
  • Tutorial courses

  • Real world decision AI applications

    • DI-star: Decision AI in StarCraftII
    • PsyDI: Towards a Multi-Modal and Interactive Chatbot for Psychological Assessments
    • DI-drive: Auto-driving platform
    • DI-sheep: Decision AI in 3 Tiles Game
    • DI-smartcross: Decision AI in Traffic Light Control
    • DI-bioseq: Decision AI in Biological Sequence Prediction and Searching
    • DI-1024: Deep Reinforcement Learning + 1024 Game
  • Research paper

    • InterFuser: [CoRL 2022] Safety-Enhanced Autonomous Driving Using Interpretable Sensor Fusion Transformer
    • ACE: [AAAI 2023] ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
    • GoBigger: [ICLR 2023] Multi-Agent Decision Intelligence Environment
    • DOS: [CVPR 2023] ReasonNet: End-to-End Driving with Temporal and Global Reasoning
    • LightZero: [NeurIPS 2023 Spotlight] A lightweight and efficient MCTS/AlphaZero/MuZero algorithm toolkit
    • SO2: [AAAI 2024] A Perspective of Q-value Estimation on Offline-to-Online Reinforcement Learning
    • LMDrive: [CVPR 2024] LMDrive: Closed-Loop End-to-End Driving with Large Language Models
    • SmartRefine: [CVPR 2024] SmartRefine: A Scenario-Adaptive Refinement Framework for Efficient Motion Prediction
    • ReZero: Boosting MCTS-based Algorithms by Backward-view and Entire-buffer Reanalyze
    • UniZero: Generalized and Efficient Planning with Scalable Latent World Models
  • Docs and Tutorials

On the low-level end, DI-engine comes with a set of highly re-usable modules, including RL optimization functions, PyTorch utilities and auxiliary tools.

BTW, DI-engine also has some special system optimization and design for efficient and robust large-scale RL training:

(Click for Details)

Have fun with exploration and exploitation.

Outline

Installation

You can simply install DI-engine from PyPI with the following command:

pip install DI-engine

If you use Anaconda or Miniconda, you can install DI-engine from conda-forge through the following command:

conda install -c opendilab di-engine

For more information about installation, you can refer to installation.

And our dockerhub repo can be found here,we prepare base image and env image with common RL environments.

(Click for Details)
  • base: opendilab/ding:nightly
  • rpc: opendilab/ding:nightly-rpc
  • atari: opendilab/ding:nightly-atari
  • mujoco: opendilab/ding:nightly-mujoco
  • dmc: opendilab/ding:nightly-dmc2gym
  • metaworld: opendilab/ding:nightly-metaworld
  • smac: opendilab/ding:nightly-smac
  • grf: opendilab/ding:nightly-grf
  • cityflow: opendilab/ding:nightly-cityflow
  • evogym: opendilab/ding:nightly-evogym
  • d4rl: opendilab/ding:nightly-d4rl

The detailed documentation are hosted on doc | 中文文档.

Quick Start

3 Minutes Kickoff

3 Minutes Kickoff (colab)

DI-engine Huggingface Kickoff (colab)

How to migrate a new RL Env | 如何迁移一个新的强化学习环境

[How to customize the neural network

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号