cotta
CoTTA是一个开源项目,专注于持续测试时间域适应研究。该项目实现了CoTTA、AdaBN和TENT等方法,用于解决图像分类和语义分割任务中的域适应问题。支持CIFAR、ImageNet和Cityscapes到ACDC等数据集的迁移实验,并提供了详细的实验指南和性能基准。这个框架有助于提升机器学习模型在变化环境中的适应能力,为计算机视觉领域的研究人员提供了实用工具。