#AutoAWQ

AutoAWQ - 面向大型语言模型的高效4位量化框架
AutoAWQ量化推理GPU加速大语言模型Github开源项目
AutoAWQ是一个专门针对大型语言模型的4位量化框架,通过实现激活感知权重量化算法,可将模型速度提升3倍,同时减少3倍内存需求。该框架支持Mistral、LLaVa、Mixtral等多种模型,具备多GPU支持、CUDA和ROCm兼容性以及PEFT兼容训练等特性。AutoAWQ为提升大型语言模型的推理效率提供了有力工具。
Meta-Llama-3.1-8B-Instruct-awq-4bit - 高效4位量化的大型指令模型 适用GPU推理
模型量化GithubLlama 3.1开源项目Huggingface自然语言处理GPUAutoAWQ
Meta-Llama-3.1-8B-Instruct模型的4位量化版本,采用AutoAWQ技术实现。This Kaitchup开发的这一版本旨在提高GPU推理效率,在保持原始性能的同时显著降低内存占用。适合在资源受限环境中运行,项目页面提供了量化过程、评估结果及使用方法的详细信息。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
Meta-Llama-3.1AutoAWQHuggingface模型大语言模型Github开源项目推理量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
Meta-Llama-3.1-70B-Instruct-AWQ-INT4 - Llama 3.1 70B指令模型INT4量化版 多语言对话优化
AutoAWQHuggingface模型大语言模型Meta Llama 3.1Github开源项目推理量化
Meta AI的Llama 3.1 70B指令模型经社区量化为INT4精度,显著降低内存需求。这一多语言模型针对对话场景优化,在行业基准测试中表现优异。支持通过Transformers、AutoAWQ、TGI和vLLM等多种方式部署使用,为开发者提供灵活选择。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号