#bert-base-uncased-emotion
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数文本分类开源项目准确率模型bert-base-uncased-emotionHuggingface情感分析Github
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
bert-base-uncased-emotion - BERT模型用于情感分析的优化与应用
PyTorch Lightning数据集Github开源项目bert-base-uncased-emotion情感类别Huggingface情感分析模型
该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。