相关项目
wefe
WEFE是一个词嵌入公平性评估框架,用于测量和缓解词嵌入模型中的偏见。它统一了现有的公平性指标,提供标准接口来封装指标、测试集和计算模型公平性。WEFE还将偏见缓解过程标准化为计算和执行两个阶段。框架支持多种安装方式,提供详细文档。WEFE致力于推动词嵌入技术的公平性发展。
LIMA-13b-hf
LLaMA是由Meta AI的FAIR团队开发的基于Transformer架构的自动回归语言模型,专为自然语言处理和机器学习研究人员而设计。该模型提供7B、13B、33B和65B参数的多种规格,支持问答和自然语言理解等研究用途,并注重偏见和有害内容生成的评估与减少。虽然使用20种语言进行训练,但其在英语文本处理上表现更佳。LLaMA被定位为AI研究基础工具,不建议直接应用于未经评估的下游应用。