相关项目
evo
Evo是一个开源的生物基础模型,专注于DNA序列的长上下文建模和设计。基于StripedHyena架构,Evo实现了单核苷酸级别的序列建模,具有近乎线性的计算和内存扩展性。该模型拥有70亿参数,在OpenGenome数据集上训练,包含约3000亿个原核全基因组标记。Evo提供8K和131K上下文长度的预训练模型,适用于从分子到基因组尺度的序列分析和生成任务。研究人员可通过HuggingFace和Together API等多种方式使用Evo,为DNA序列研究提供了强大而灵活的工具。
LucaOne
LucaOne是一个整合核酸和蛋白质语言处理的生物基础模型。通过多任务预训练,该模型实现了DNA、RNA和蛋白质序列的高效表示学习。在序列分类、结构预测等多个下游任务中,LucaOne展现出优异性能。项目开源了训练数据、代码和预训练模型,为生物信息学研究提供了实用工具。